CHEMICAL BONDING

Bleaches are Examples of Oxidising Agents (e.g. $\mathbf{N a O C l}$) or Reducing Agents (e.g. $\mathbf{S O}_{2}$)
Both require moisture to work

Sodium Hypochlorite acts as a Bleach by Oxidising

- Permanent
- Strong and used to bleach cotton - can damage delicate fibres
- Forms nascent oxygen (oxygen atoms which are very reactive)

Sulphur Dioxide acts by Reduction

- Temporary
- Mild - so used to bleach silk

Nomenclature of Transition Metal Compounds.

Oxidation numbers of elements may change from compound to compound, especially those containing Transition Elements
Transition elements have their oxidation state included in their names
e.g. $\quad \mathrm{KMnO}_{4}$ is potassium manganate (VII) $\quad \mathrm{MnO}_{2}$ is manganese (IV) oxide CuCl is copper (I) chloride $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}$ is iron (III) oxide
Balancing Complex Equations using Oxidation Numbers
Write unbalanced equation then
Assign Oxidation Numbers to all atoms

Select those which change and assign oxidation [increase in Ox. N°.] and reduction [decrease in Ox. N°]

Write down electron gain and loss for each

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{Mn} \\
+7
\end{array} & \begin{array}{l}
\mathrm{e}^{-}=\begin{array}{l}
\mathrm{Mn}^{2+} \\
+2
\end{array} \\
\mathrm{Fe}^{2+}-1 \mathrm{e}^{-}= \\
+2
\end{array} \mathrm{Fe}^{3+} \\
+3
\end{array}
$$

Balance the electron transfer by multiplying the Fe equation by five

Now put these values into the equation

$$
\mathrm{MnO}_{4}{ }^{1-}+5 \mathrm{Fe}^{2+}+\mathrm{H}^{+}=\mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}
$$

Finally balance the equation by inspection 4 O in $\mathrm{MnO}_{4}{ }^{1-}$ so need $4 \mathrm{H}_{2} \mathrm{O}$ to balance

$$
\mathrm{MnO}_{4}{ }^{1-}+5 \mathrm{Fe}^{2+}+\mathrm{H}^{+}=\mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

There are 8 H in $4 \mathrm{H}_{2} \mathrm{O}$ so we need $8 \mathrm{H}^{+}$to balance these

$$
\mathrm{MnO}_{4}{ }^{1-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+}=\mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

Questions on this Section from Past Exams Year by Year

2009	2008	2007	2006	2005	2004	2003	2002
11 b	4 g	4 c	4 i ,	$4 \mathrm{a}, \mathrm{b}$,	$4 \mathrm{~b}, \mathrm{c}, \mathrm{g}$,	$5 \mathrm{~b}, \mathrm{c}$	4 e
	5	5 b	5 b ,	5 c	5a		10 a
	10 b	10 c	10 b				

STOICHIOMETRY

a 3•1 States of Matter

Motion of Particles in Solids, Liquids and Gases

Solid: Particles very closely packed and tightly bound so they have fixed shape and fixed volume. Vibrate constantly in all directions and as this increases with temperature it causes expansion. At melting point they break free from each other causing a greater increase in volume as they are less tightly packed.
Liquid: Particles are close together but can move over one another freely thus a liquid can flow. The volume is fixed at any given temperature. As temperature increases they spread out more and at boiling point they break free completely from the other particles and there is a large increase in volume
Gas: Particles are relatively far apart and free to move in all directions so it has no fixed volume and no fixed shape.

b Diffusion

Spontaneous spreading out of a substance due to the natural movement of its particles.

EXPERIMENT:

Demonstration NH_{3} and Hydrogen Chloride
Ammonia and HCl diffuse along the tube. Ammonia diffuses faster because it is lighter. Where they meet is shown by a layer of ammonium chloride which precipitates.

Demonstration Ink and Water

If a pipette is used to carefully place a drop of ink in the bottom of a beaker of water and it is left for a week or two then the ink will gradually diffuse throughout the water. Slower than diffusion in gas

Smoke and Air

$\mathrm{NH}_{3}+\mathrm{HCl}=\mathrm{NH}_{4} \mathrm{Cl}$

If someone is smoking in the room next door you can often smell it because the smoke diffuses through gaps in the wall or around the door.

C 3.2 Gas Laws

Boyle's Law

At a constant temperature, the volume of a given mass of any gas is inversely proportional to the pressure on the gas.

Boyle and his assistant Robert Hooke developed an improved air pump which helped him carry out his experiments into pressurevolume relationships.

$$
\mathbf{P} \times \mathbf{V}=\text { constant }
$$

STOICHIOMETRY

d Charles's Law

At a constant pressure, the volume of a given mass of any gas is directly proportional to the Kelvin temperature.

Volume directly proportional
temperature

Temperature (K)

Gay-Lussac's Law of Combining Volumes

When gases react, the volumes consumed in the reaction bear a simple whole number ratio to each other, and to the volumes of any gaseous products of the reaction, all volumes being measured under the same conditions of temperature and pressure

Avogadro's Law

Equal volumes of gases, under the same conditions of temperature and pressure contain equal numbers of molecules

Combined Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=\text { constant }
$$

Correction of Gas Volumes to s.t.p. (units: $\mathbf{P a}, \mathrm{cm}^{\mathbf{3}}, \mathrm{K}$).
A definite mass of gas occupies $500 \mathrm{~cm}^{3}$ at $77^{\circ} \mathrm{C}$ and a pressure of 100000 Pa . What would its volume be at s.t.p.?

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& V_{1}=\frac{P_{2} V_{2}}{P_{1} T_{2}} \\
& =\frac{100000 \times 500 \times 273}{101325 \times 350} \\
& =384.90 \mathrm{~cm}^{3} \\
& \text { s.t.p Experimental } \\
& \mathrm{P}_{1}=101325 \mathrm{~Pa} \quad \mathrm{P}_{2}=100000 \mathrm{~Pa} \\
& \mathrm{~V}_{1}=\text { ? } \\
& \mathrm{T}_{1}=273 \mathrm{~K} \\
& \mathrm{~V}_{2}=500 \mathrm{~cm}^{3} \\
& \mathrm{~T}_{2}=77+273=350 \mathrm{~K}
\end{aligned}
$$

e 3.3 The Kinetic Theory of Gases:

Developed by James Clerk Maxwell and Ludwig Boltzmann

Ideal Gases

Obey all the assumptions of the Kinetic Theory under all conditions of temperature and pressure.

Gases are closest to ideal gas behaviour at low pressures and high temperatures

STOICHIOMETRY

Assumptions of the Kinetic Theory

- Gases are made of particles whose diameters are negligible compared to the distances between them
- There are no attractive or repulsive forces between the particles
- The particles are in constant, rapid, random motion colliding with each other and the walls of the container
- All collisions are perfectly elastic
- The average kinetic energy of the particles is proportional to the Kelvin temperature.

Equation of State for an Ideal Gas:
 $$
P V=n R T \quad\left(\text { units: } \mathrm{Pa}, \mathrm{~m}^{3}, \mathrm{~K}\right)
$$

Calculate the volume occupied by 8 g of oxygen gas at $27^{\circ} \mathrm{C}$ and a pressure of 200 kPa.

Answer
$\mathrm{P}=200 \mathrm{kPa}=200 \times 10^{3} \mathrm{~Pa}$
$\mathrm{V}=$?
$\mathrm{n}=\frac{\text { mass }}{\text { Relative Molecular Mass }}=\frac{8}{32}=0.25$ mole
$\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}=27+273=300 \mathrm{~K}$
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.25 \times 8.31 \times 300}{200 \times 10^{3}}=0.003116 \mathrm{~m}^{3}$
= 3.12 litres
N.B. Converting units
$\mathrm{cm}^{3} \rightarrow \mathrm{~m}^{3}$ divide by $1,000,000$
litres $\rightarrow \mathrm{m}^{3}$ divide by 1,000
4.2 g of a gas occupies a volume of 1.5 litres at $77^{\circ} \mathrm{C}$ and $100,000 \mathrm{~Pa}$.
(i) How many moles of the gas does the container contain?
(ii) Calculate the relative molecular mass of the gas

Answer

(i) $\mathrm{PV}=\mathrm{nRT}$
$\mathrm{P}=100,000 \mathrm{~Pa}$
$\mathrm{V}=1.5$ litres $=1.5 \times 10^{-3} \mathrm{~m}^{3}$
$\mathrm{n}=$?
$\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}=273+77=350 \mathrm{~K}$
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{100,000 \times 1.5 \times 10^{-3}}{8.31 \times 350}=\mathbf{0 . 0 5 1 7 5}$
(ii) 0.05157 moles $=4.2 \mathrm{~g}$

1 mole $=\frac{4.2}{0.05157}=81.44 \mathrm{~g}$

Reasons why Gases Deviate from Ideal Gas Behaviour

At low temperatures and high pressures

- There are attractive or repulsive forces between the particles
- The diameters of particles are not negligible compared to the distances between them

f 3.4 The Mole

$$
\text { Avogadro constant }=6 \times 10^{23} \mathrm{~mol}^{-1}
$$

The Mole

The SI unit for amount of substance containing the Avogadro number of particles.

Standard Temperature \& Pressure (s.t.p.)

$$
\text { Standard Temperature }=273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)
$$

Standard Pressure $101,325 \mathrm{Nm}^{-2}=101,325 \mathrm{~Pa}=101 \mathrm{kPa}$
Molar Volume at s.t.p

$$
\text { Molar volume at } \mathrm{STP}=22.4 \mathrm{I}=22,400 \mathrm{~cm}^{3}=2.24 \times 10^{-2} \mathrm{~m}^{3}
$$

STOICHIOMETRY

Relative Molecular Mass ($\mathbf{M}_{\mathbf{r}}$)
The mass of a molecule compared to $\frac{1}{12}$ of the mass of a carbon 12 isotope
Calculation of Relative Molecular Mass from Relative Atomic Masses Add the relative atomic masses of its constituent atoms.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}=(1 \times 2)+16=18 \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=[14+(1 \times 4)] \times 2+32+(16 \times 4)=132 \\
& \mathrm{MgCO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=24+12+(16 \times 3)+10 \times[(1 \times 2)+16]=264
\end{aligned}
$$

Molar Mass
The mass in grams of a mole of that substance
g 3.5 Converting Moles to Grams, Litres \& Number of Particles Grams - multiply number of moles by Relative Molecular Mass

What is the mass of 0.2 moles of CaCO_{3} ?
$\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$
0.2 moles $=0.2 \times 100=20 \mathrm{~g}$

Litres - multiply by 22.4 if STP or 24 if RTP
What is the volume of $\mathbf{2}$ moles of $\mathbf{H}_{\mathbf{2}}$ at STP?
$2 \times 22.4=44.8$ litres

Number of Particles - multiply by $6 \times 10^{\mathbf{2 3}}$
How many molecules are there in 5 moles of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$?
$5 \times 6 \times 10^{23}=30 \times 10^{23}=3.0 \times 10^{24}$

h 3.6 Converting Grams and Litres to Moles and Number of Particles

Grams to Moles - divide by Relative Molecular Mass ($\mathbf{M}_{\mathbf{r}}$)
How many moles are there in 88 g of CO_{2} ?
Relative molecular mass $\mathrm{CO}_{2}=12+(16 \times 2)=44$
$88 / 44=2$ moles

Grams to Number of Particles divide by Relative Molecular Mass then multiply by 6×10^{23}

How many molecules are there in 9 grams of water?
Relative molecular mass $\mathrm{H}_{2} \mathrm{O}=(1 \times 2)+16=18$
$9 / 18 \times 6 \times 10^{23}=3 \times 10^{23}$

STOICHIOMETRY

Litres to moles - divide by 22.4 (STP) or 24 (RTP) Room Temp. \& Pressure
How many moles of SO_{2} are there in 3 litres of the gas @ STP?

$$
\frac{3}{22.4}=0.13 \text { moles }
$$

$\mathrm{cm}^{\mathbf{3}}$ to moles - divide by $\mathbf{2 2 , 4 0 0}$ if STP or $\mathbf{2 4 , 0 0 0}$ if RTP

How many moles of NO_{2} are there in $\mathbf{1 7 5} \mathrm{cm}^{\mathbf{3}}$ of the gas @ STP?

$175 / 22,400=0.0078125$ moles
Litres to Number of Particles - divide by 22.4 then multiply by $6 \times 10^{\mathbf{2 3}}$

How many molecules are there in 4 litres of NH_{3} ?

$4 / 22.4 \times 6 \times 10^{23}=1.07 \times 10^{23}$
I $3 \cdot 7$ Converting Moles to Number of Atoms of a Molecular Species
How many atoms are there in $\mathbf{0 . 1}$ mole of ammonia $\left[\mathrm{NH}_{3}\right]$?
$0.1 \times 6 \times 10^{23} \times 4=2.4 \times 10^{23}$

Mass Spectrometer to find Relative Molecular Mass of Compounds

The relative molecular mass of a compound can be found using a mass spectrometer.
The molecules are ionised and broken up into positively charged pieces with different masses. These are separated and the amounts of each piece recorded. This is called the mass spectrum of the substance. The mass spectrum usually also contains the whole molecule as well as fragments

J 3.8 Chemical Formulas

Empirical Formula

Simplest ratio of one element to another in a compound
Ethyne has a molecular formula of $\mathrm{C}_{2} \mathrm{H}_{2}$, sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ and glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
What are their empirical formulas?

$$
\begin{aligned}
\mathrm{C}_{2} \mathrm{H}_{2} & =\mathrm{CH} \\
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} & =\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} & =\mathrm{CH}_{2} \mathrm{O}
\end{aligned}
$$

STOICHIOMETRY

Calculation of Empirical Formulas, given the Percentage Composition by Mass
On analysis a compound was found to contain
$\mathbf{C}=\mathbf{5 4 . 5 4 \%}, \mathbf{H}=\mathbf{9 . 1 0 \%}$ and $\mathbf{O}=\mathbf{3 6 . 3 6 \%}$.
Calculate its empirical formula.
Imagine we have 100 g of the compound. This will contain
54.54 g carbon $=54.54 / 12$ moles of carbon atoms $=4.55$
9.10 g hydrogen $=9.10 / 1$ moles of hydrogen atoms $=9.10$
36.36 g oxygen $=36.36 / 16$ moles of oxygen atoms $=2.27$
$4.55: 9.10: 2.27^{*}$
$2: \quad 4 \quad: \quad 1$
$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{O}$

Alternative method

$$
\begin{array}{ccc}
\frac{\% C}{\mathbf{A}_{\mathbf{r}} \mathbf{C}}: & \frac{\% \mathbf{H}}{\mathbf{A}_{\mathbf{r}} \mathbf{H}} & \frac{\% \mathbf{\%}}{\mathbf{A}_{\mathbf{r}} \mathbf{O}} \\
\frac{54.54}{12} & \frac{9.10}{1} & \frac{36.36}{16} \\
4.55 & 9.1 & 2.27^{*} \\
2 & 4 & 1 \\
& \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{O} &
\end{array}
$$

* Divide each by the smallest number

Calculation of Empirical Formulas, given the Masses of Reactants \& Product
1.44 g of magnesium was completely burned in oxygen and resulted in the formation of 2.40 g of magnesium oxide. Calculate the empirical formula of magnesium oxide.
Moles of Magnesium $=\frac{1.44}{24}=0.06$
Mass of oxygen $=2.40-1.44=0.96$
Moles of oxygen $\quad=\frac{0.96}{16}=0.06$
$\mathrm{Mg}: \mathrm{O}=0.06: 0.06=1: 1$
Empirical formula $=\mathbf{M g O}$

Alternative method

Mass of magnesium $\quad=1.44$
Mass of magnesium oxide $\quad=2.40$
Mass of Oxygen $=2.40-1.44=0.96$ $\frac{\text { Mass } \mathrm{Mg}}{\mathrm{A}_{\mathrm{r}}} \frac{\mathrm{Mg}}{}: \frac{\text { Mass of } \mathrm{O}}{\mathrm{A}_{\mathrm{r}} \mathrm{O}}$
$\frac{1.44}{24}: \frac{0.96}{16}$
0.06 : 0.06

1 : 1
MgO
$A_{r}=$ Relative Atomic Mass

K 3.9 Percentage Composition by Mass

Percentage by mass of each element in a molecule of a compound

$$
\begin{aligned}
& \text { What is the percentage of oxygen in } \mathbf{H}_{2} \mathbf{S O}_{\mathbf{4}} \text { ? } \\
& \text { Molecular mass }=(1 \times 2)+32+(16 \times 4)=\mathbf{9 8} \\
& \frac{\text { Mass of Oxygen }}{\text { Molecular mass }} \times 100=\frac{(16 \times 4) \times 100}{98}=\mathbf{6 5 . 3 \%}
\end{aligned}
$$

Molecular Formula

Gives the actual numbers of atoms of each element in a molecule

I Structural Formulas

Shows the actual number and arrangement of atoms within a molecule of the substance

Compound	Empirical Formula	Molecular Formula	Structural Formula
Ethane	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{6}$	
Ethene	CH_{2}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\begin{gathered} H=H \\ C=C \\ H \\ H \end{gathered}$
Ethyne	CH	$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

STOICHIOMETRY

III Calculation of Molecular Formula given the Empirical Formulas and the

 Relative Molecular Mass- Calculate the mass of an empirical formula unit
- Divide the relative molecular mass by this to find the number of units there are in a molecule.
- Multiply the empirical formula by this number.

Glucose has an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ and a relative molecular mass of 180. Calculate its molecular formula.

Formula mass of $\mathrm{CH}_{2} \mathrm{O}=12+(1 \times 2)+16=30$
Number of $\mathrm{CH}_{2} \mathrm{O}$ units $=180 / 30=6$
Molecular formula $=6 \times \mathrm{CH}_{2} \mathrm{O}=\mathrm{C}_{6} \mathbf{H}_{12} \mathrm{O}_{6}$

Urea has an empirical formula of $\mathrm{CON}_{2} \mathrm{H}_{4}$ and a relative molecular mass of $\mathbf{6 0}$. Find its molecular formula.
Formula mass $=12+16+(14 \times 2)+(1 \times 4)=60$
Number of $\mathrm{CON}_{2} \mathrm{H}_{4}$ units $=60 / 60=1$
Molecular formula $=\mathrm{CON}_{2} \mathrm{H}_{4}$

n 3-10 Chemical Equations

- Must contain the correct molecular formula of all the reactants and products
- Must be balanced

Balancing Chemical Equations

When balancing, the formulae of the compounds cannot be changed in any way, but can only be multiplied by appropriate numbers.

Carbon and oxygen react to form carbon monoxide. Write a balanced equation for this reaction.
$\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}$
One C on each side so C is OK
2 O's on left and only one on right so
CO must be multiplied by 2
$\mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO}$
Now 1 C on left and 2 on right so C must be multiplied by 2
$\mathbf{2} \mathrm{C}+\mathrm{O}_{\mathbf{2}}=\mathbf{2} \mathbf{C O}$
Now balanced - recheck to be sure

Methane burns in oxygen to form carbon dioxide and water. Write a balanced equation for the reaction.
$\mathrm{CH}_{4}+\mathrm{O}_{2}=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
One C on each side so C is OK
4 H 's on left and only 2 on right so $\mathrm{H}_{2} \mathrm{O}$ must be multiplied by 2
$\mathrm{CH}_{4}+\mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C and H now OK
2 O's on left and 4 on right so O_{2} must be multiplied by 2
$\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Now balanced - recheck to be sure

Balancing Redox Equations

You will only be asked to balance ionic equations and should ignore spectator ions

> Balance the following ionic equation
> $\mathrm{Fe}^{2+}+\mathrm{Cl}_{2}=\mathrm{Fe}^{3+}+\mathrm{Cl}^{-}$

One Fe on each side so Fe is OK
2 Cl on left side but only one on right so Cl^{-}must be multiplied by 2 $\mathrm{Fe}^{2+}+\mathrm{Cl}_{2}=\mathrm{Fe}^{3+}+2 \mathrm{Cl}^{-}$
This equation appears to be balanced but it is NOT as electron movements are not balanced - it needs to be balanced using oxidation numbers - see across
Balance the following ionic equation
$\mathrm{Fe}^{2+}+\mathrm{Cl}_{2}=\mathrm{Fe}^{3+}+\mathbf{C l}$
$+2 \quad 0 \quad+3 \quad-1$
Fe^{2+} loses an electron to become Fe^{3+}
$\mathrm{Fe}^{2+}-1 \mathrm{e}^{-}=\mathrm{Fe}^{3+}$
Each Chlorine gains an electron to become Cl^{-}
But there are 2 Cl on the left so we need 2 on the right
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-}=2 \mathrm{Cl}^{-}$
We now need to multiply the Fe^{2+} to get a loss of $2 \mathrm{e}^{-}$
$2 \mathrm{Fe}^{2+}-2 \mathrm{e}^{-}=2 \mathrm{Fe}^{3+}$
Now^{-}we put these values into the equation
$\mathbf{2} \mathrm{Fe}^{2+}+\mathbf{C l}_{\mathbf{2}}=\mathbf{2} \mathbf{F e}^{3+}+\mathbf{2} \mathbf{C l}^{-}$

Calculations Based on Balanced Equations using the Mole Concept
Balanced equations should be given for this type of calculation and should be in g and kg rather than tonnes

STOICHIOMETRY

(1) Calculations Involving Masses and Volumes

The first thing you need to do is change the quantities you are given into moles Divide mass by the relative molecular mass
Divide volumes by 22.4 if given in litres or 22400 if given in cm^{3}

Octane burns in oxygen according to the equation

$$
\mathrm{C}_{8} \mathrm{H}_{18}+12 \frac{1}{2} \mathrm{O}_{2}=8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}
$$

What volume of oxygen (measured at s.t.p.) is required for complete combustion of 11.4 g of octane?
$\mathrm{C}_{8} \mathrm{H}_{18}=(8 \times 12)+(1 \times 18)=114$
11.4 g of octane $=11.4 / 114=0.1$ mole
$\mathrm{C}_{8} \mathrm{H}_{18}+12 \frac{1}{2} \mathrm{O}_{2}=8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
1 mole 12.5 mole
0.1 mole 1.25 mole

1 mole of O_{2} at s.t.p. $=22.41$
1.25 moles $=22.4 \times 1.25=28$ litres

Calcium carbonate decomposes when heated strongly according to the following equation
$\mathrm{CaCO}_{3}=\mathrm{CaO}+\mathrm{CO}_{2}$
What mass of calcium oxide would be obtained if 50 g of calcium carbonate were decomposed?
$\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$
$50 \mathrm{~g} \mathrm{CaCO}_{3}=50 / 100 \mathrm{~mole}=0.5$ mole $\mathrm{CaCO}_{3}=\mathrm{CaO}+\mathrm{CO}_{2}$
1 mole 1 mole
0.5 mole 0.5 mole

1 mole of $\mathrm{CaO}=40+16=56 \mathrm{~g}$
0.5 moles $=56 \times 0.5=28 \mathrm{~g}$

Calculations Involving Excess of One Reactant

In most chemical reactions one of the reactants is present in excess

Magnesium reacts with hydrochloric acid according to the equation

 $\mathbf{M g}+2 \mathbf{H C l}=\mathrm{MgCl}_{2}+\mathbf{H}_{2}$If $550 \mathrm{~cm}^{3}$ aqueous HCl containing 3.65 g of HCl is added to 2 g of Mg Show that the magnesium is present in excess.

Moles of $\mathrm{HCl}=3.65 / 36.5=0.10$ mole Moles of Mg at start $2 / 24=0.08$ mole
$\underset{1 \text { mole }}{\mathrm{Mg}}+\underset{2 \text { mole }}{2 \mathrm{HCl}}=\underset{1 \text { mole }}{\mathrm{MgCl}_{2}}+\underset{1 \text { mole }}{\mathrm{H}_{2}}$

Find out how much Mg the 0.10 mole of HCl will react with since if magnesium is in excess then HCl is the limiting reagent. 0.05 mole 0.1 mole
0.1 mole of HCl needs 0.05 mole Mg but we have 0.08 therefore we have excess of $\mathbf{0 . 0 3}$ mole of magnesium

Calculation of Percentage Yields

In many reactions the amount of product obtained is less than that predicted by the equation. Sometimes the reaction does not go to completion and at other times some product is lost while purifying it.

Percentage Yield $=\frac{\text { Actual yield x } 100}{\text { Theoretical yield }}$

Ethanoic acid is prepared in the laboratory by reacting ethanol with excess acidified dichromate solution.
$3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{C}_{2} \mathrm{O}_{7}{ }^{2-}+\mathbf{1 6} \mathrm{H}_{+}=\mathbf{3} \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O}$
A sample of ethanoic acid was prepared in the laboratory by reacting $6 \mathbf{~ c m}^{3}$ of ethanol [Density $=$ $\left.0.8 \mathrm{~g} \mathrm{~cm}^{-3}\right]$ with excess acidified sodium dichromate. After purification it was found that $\mathbf{2 . 1 5 g}$ of ethanoic acid was collected. Calculate the percentage yield of ethanoic acid.
Mass of ethanol $=6 \times 0.8 \mathrm{~g}=4.80 \mathrm{~g}$ Moles of ethanol $=4.8 / 46=0.1$ moles

Mass $=$ Density x Volume
is often used in exams so be aware of it. If you are given the density of a liquid it is a sure sign that this is required.

STOICHIOMETRY

EXPERIMENT: To Measure the Relative Molecular Mass of a Volatile Liquid

- A volatile liquid is one that is easily vaporised
- Find mass of dry conical flask, rubber band and aluminium foil
- Add some propanone
- Seal top with foil and rubber band - put small hole in foil
- Place flask so that at least half of it is under water in a large beaker of boiling water
- Leave flask till all liquid has evaporated - use a thermometer to get water temperature
- Remove flask and allow to cool then dry it - the vapour condenses back to liquid
- Reweigh the flask, foil and band and condensed liquid
- Calculate mass of the liquid whose vapour filled flask [change in mass got by subtraction of original mass]
- Find volume of flask by filling with water and pouring into graduated cylinder
- Record atmospheric pressure using barometer.
- Calculate the volume of the vapour at s.t.p. using:
$\mathbf{V}_{1}=P_{2} V_{2} T_{1} / P_{1} T_{2}$
- Don't forget Temperature in $K={ }^{\circ} \mathrm{C}+273$
- $\mathrm{V}_{1}=$ volume of vapour at s.t.p.
- Find number of moles of chloroform by dividing volume by 22,400
- Find relative molecular mass by dividing the mass by the number of moles

WORKED EXAMPLE

In an experiment to measure the relative molecular mass of a volatile liquid $0.275 \mathbf{g}$ of the liquid was vaporised at $97^{\circ} \mathrm{C}$. The volume occupied was found to be $95 \mathrm{~cm}^{3}$.
The pressure was $1 \times 10^{5} \mathrm{~Pa}$.
(a) Calculate the number of moles of the volatile liquid vaporised.
(b) Calculate the relative molecular mass of the volatile liquid.
$\mathrm{T}=97+273=370 \mathrm{~K}$
(a) Let $\mathrm{P}_{1}, \mathrm{~V}_{1}$ and T_{1} be STP and $\mathrm{P}_{2}, \mathrm{~V}_{2}$ and T_{2} be experiment conditions
$\mathrm{V}_{1}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}}{\mathrm{P}_{1} \mathrm{~T}_{2}}=\frac{1 \times 10^{5} \mathrm{~Pa} \times 95 \mathrm{~cm}^{3} \times 273 \mathrm{~K}}{1.013 \times 10^{5} \mathrm{~Pa} \times 370 \mathrm{~K}}=69.19 \mathrm{~cm}^{3}$
moles $=\frac{\text { volume }}{22,400}=\frac{69.19}{22,400}=\mathbf{0 . 0 0 3 0 9}$ moles
(b) 0.00309 moles $=0.275 \mathrm{~g}$

1 mole $=\frac{0.275}{0.00309}=88.99=\mathbf{8 9}$

2009	2008	2007	2006	2005	2004	2003	2002
$10 \mathbf{c}$	$11 \mathbf{b}$	$4 \mathbf{e}, \mathbf{h}$	$4 \mathbf{d}$	$4 \mathbf{h}$	$4 \mathbf{d}, \mathbf{h}$	3	$1 \mathbf{d}$
		$10 \mathbf{b}$	$11 \mathbf{a}$	$10 \mathbf{b}$	$10 \mathbf{a}, \mathbf{c}$	$\mathbf{4} \mathbf{b}, \mathbf{g}$	$4 \mathbf{i}$
				$11 \mathbf{b}$			$11 \mathbf{a}$

a $4 \cdot 1$ Concentration of Solutions

Solutions are intimate mixtures of a solute (e.g. salt) and a solvent (e.g. water) A concentrated solution contains a large amount of solute per litre of solution A dilute solution contains a small amount of solute per litre of solution

Concentration
Is the amount of solute in a specified amount of solution

Ways of Expressing Concentration

Moles per Litre mol l^{-1} (molarity)
This is the most useful way of expressing concentration for a chemist
If a solution contains $\mathbf{1}$ mole of solute in a litre of solution is said to be $\mathbf{1}$ molar [1M] If a solution contains 2 moles of solute in a litre of solution is said to be 2 molar [2M]
If a solution contains 0.5 mole of solute in a litre of solution is said to be 0.5 molar [0.5 M]
Grams per litre $\mathbf{g ~ I}^{\mathbf{- 1}}$
This is the number of grams of solute per litre of solution
Parts per million p.p.m.
This is the number of milligrams per litre $-\mathbf{m g ~ l}^{\mathbf{- 1}}$
Percentage weight per volume \% (w/v)
This is the number of grams of solute per $100 \mathrm{~cm}^{3}$ of solution

Percentage volume per volume \% (v/v)
This is the number of grams of solute per $100 \mathrm{~cm}^{3}$ of solution A 5% vinegar solution contains $\mathbf{5} \mathbf{~ c m}^{\mathbf{3}}$ of ethanoic acid per $\mathbf{1 0 0} \mathrm{cm}^{\mathbf{3}}$ of vinegar.
A bottle of wine labelled as 13% contains $13 \mathrm{~cm}^{3}$ of ethanol per $100 \mathrm{~cm}^{3}$ of wine
Percentage weight per weight \% (w/w)
A 2% Arnica ointment contains 2 g of arnica per 100 g of ointment
b Calculation of Molarity from Concentration in Grams per Litre

$$
\text { molarity }=\frac{\text { grams per litre }}{\text { molar mass }}
$$

What is the molarity of a NaOH solution containing 4 g of NaOH per litre?

$$
\text { Molarity }=\frac{\text { grams per litre }}{\text { molar mass }}=\frac{4}{40}=\mathbf{0 . 1}
$$

Calculation of Concentration in Grams per Litre from Molarity
concentration in grams per litre $=$ molar mass \times molarity
What is the concentration in grams per litre of a $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
Concentration in grams per litre $=$ molar mass \times molarity

$$
=98 \times 0.1=\mathbf{9 . 8} \mathbf{~ g l}^{-1}
$$

VOLUMETRIC ANALYSIS

Calculation of Number of Moles from Molarity and Volume

$$
\text { Number of moles }=\frac{\text { volume }}{1000} \times \text { molarity }
$$

How many moles are there in $250 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M HCl ?

$$
\text { number of moles }=\frac{\text { volume }}{1000} \times \text { molarity }=\frac{250}{1000} \times 0.1=\mathbf{0 . 0 2 5}
$$

Calculations involving Percentage Concentrations

A $500 \mathrm{~cm}^{\mathbf{3}}$ bottle of vinegar contains $\mathbf{2 5} \mathrm{cm}^{3}$ of pure ethanoic acid.
What is its concentration as \% (v / v)?
$25 \mathrm{~cm}^{3}$ in $500 \mathrm{~cm}^{3} \rightarrow 5 \mathrm{~cm}^{3}$ in $100 \mathrm{~cm}^{3} \rightarrow \mathbf{5 \%}$ (V/V)

A $\mathbf{7 0} \mathbf{~ c l ~ b o t t l e ~ o f ~ w i n e ~ i s ~ l a b e l l e d ~} \mathbf{1 3 \%}(\mathrm{v} / \mathrm{v})$. What volume of alcohol does it contain?
13% (v/v) $\rightarrow 100 \mathrm{~cm}^{3}$ contains $13 \mathrm{~cm}^{3}$
$700 \mathrm{~cm}^{3}$ contains $7 \times 13 \mathrm{~cm}^{3}=91 \mathrm{~cm}^{3} \quad\left[70 \mathrm{cl}=700 \mathrm{~cm}^{3}\right]$
$250 \mathrm{~cm}^{3}$ of NaOH solution contains 20 g of NaOH .
What is its concentration as \% (W/V)?
$250 \mathrm{~cm}^{3}$ contins 20 g .
$100 \mathrm{~cm}^{3}$ contains $\frac{20}{2.5}=\mathbf{8 \%}(\mathbf{w} / \mathbf{v})$
C Colour Intensity as a Function of Concentration (simple treatment only)
If a solution is coloured then the intensity of the colour is proportional to the concentration.
Calculation of the Effect of Dilution on Concentration

$$
\mathbf{V}_{\text {dil }} \times \mathbf{M}_{\text {dil }}=\mathbf{V}_{\text {conc. }} \times \mathbf{M}_{\text {conc. }}
$$

What volume of 1 M NaOH solution is needed to make $300 \mathrm{~cm}^{3}$ of 0.05 M solution?
$\mathrm{V}_{\text {dil }} \times \mathrm{M}_{\text {dil }}=\mathrm{V}_{\text {conc. }} \times \mathrm{M}_{\text {conc }}$
$\mathrm{V}_{\text {conc. }}=\frac{\mathrm{V}_{\text {dil }} \times \mathrm{M}_{\text {dil }}}{\mathrm{M}_{\text {conc }}}=\frac{300 \times 0.05}{1}=15 \mathrm{~cm}^{3}$
$20 \mathrm{~cm}^{3}$ of of 0.2 M HCl is diluted to a volume of $250 \mathrm{~cm}^{3}$ with deionised water. What is the concentration of the diluted solution?
$\mathrm{V}_{\text {dil }} \times \mathrm{M}_{\text {dil }}=\mathrm{V}_{\text {conc. }} \times \mathrm{M}_{\text {conc }}$
$\mathrm{M}_{\text {dil }}=\frac{\mathrm{V}_{\text {conc. }} \times \mathrm{M}_{\text {conc }}}{\mathrm{V}_{\text {dil }}}=\frac{20 \times 0.2}{250}=0.016 \mathrm{M}$

EXPERIMENT: Preparation of a Standard Solution of
Sodium Carbonate [$250 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{Na} \mathbf{N O}_{3}$]

- Weigh out 7.15 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ on clock glass
[250/1000 of 0.1 of $286\left(\mathrm{RMM} \mathrm{Na} 2 \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)=7.15$]
volume $/ 1000 \times$ molarity \times RMM including water of crystallisation
- Dissolve in deionised water in beaker with washings using deionised water from clock glass
- Pour through funnel into $250 \mathrm{~cm}^{3}$ volumetric flask with washings from the beaker using deionised water
- Make up to mark with deionised water
- Read from the bottom of meniscus and with eye level with mark
- Stopper and invert 10 times to make solution homogeneous [long thin neck makes this necessary]

e 4.2 Acids and Bases

Acids

Turn blue litmus red, React with metals forming a salt plus hydrogen,
Monobasic acids have one hydrogen that can be replaced by a metal. E.g. HCl,
HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
Dibasic acids have two hydrogens that can be replaced by a metal. E.g. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Bases

Turn red litmus blue, Neutralise acids. Alkalis are bases that are soluble in water Salt
The result of the neutralisation of an acid with a base.
E.g. the salt sodium chloride is formed when HCl reacts with NaOH

$$
\begin{aligned}
& \mathbf{H C l}+\mathbf{N a O H}=\mathbf{N a C l}+\mathbf{H}_{2} \mathbf{O} \\
& \text { Acid }+ \text { Base }=\text { Salt }+ \text { Water }
\end{aligned}
$$

Sulphates are the salts of sulphuric acid Nitrates are the salts of nitric acid Chlorides are the salts of hydrochloric acid

Neutralisation

Formation of a salt from an acid and a base.

Household acids

Vinegar (ethanoic acid), Lemon juice (citric acid)

Household bases

Sodium hydroxide as oven cleaner, Ammonia is used in household cleaners
Everyday examples of neutralisation

- Lime (CaO) is spread on fields in agriculture to neutralise acid soils
- Stomach powders contain a base such as magnesium hydroxide to neutralise excess stomach acid (HCl) which can cause indigestion.

VOLUMETRIC ANALYSIS

f 4.3 Arrhenius Theory of Acids and Bases

An Acid

is a neutral molecule which dissociates in water to form a hydrogen ion(s) and an anion $\mathbf{H X}=\mathbf{H}^{+}+\mathbf{X}^{-}$
Acidic properties due to H^{+}
A Base
dissociates in water to form a hydroxide ion and a cation $\mathbf{M O H}=\mathbf{M}^{+}+\mathbf{O H}^{-}$

Basic properties due to OH^{-}

Arrhenius

Strong Acids and Bases Dissociate Fully in aqueous solution

Weak Acids and Bases only Dissociate Slightly in aqueous solution

Neutralisation of Strong Acid with a Strong Base e.g. $\mathbf{H C l}$ with $\mathbf{N a O H}$

Acid dissociates to form H^{+}and Cl^{-}while base dissociates to form Na^{+}and OH^{-}
H^{+}ions react with OH^{-}ions to form water
Na^{+}and Cl^{-}do not react and thus can be left out of the equation
Half equation or ionic equation is

$$
\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}
$$

Conductivity of Strong and Weak Acids

Weak acids conduct poorly when dissolved in water because there are few ions present Strong acids conduct well when dissolved in water as there are numerous ions present Strong acids only conduct when dissolved in water because no ions are present in pure acid.

Limitations of Arrhenius Theory

Arrhenius Theory is limited to dilute aqueous solutions and has been superseded

g 4•4 Brønsted-Lowry Theory of Acids and Bases

Acid is a proton donor Base proton acceptor

An acid-base reaction involves the transfer of a proton $\left(\mathrm{H}^{+}\right)$from the acid to the base

Amphoteric Nature of Water

In equation A the water is acting as a base because it accepts a proton

In equation B the water is acting as an acid as it donates a proton
Water can thus act as an acid or a base depending on circumstances. Water is amphoteric

Strength of Acids and Bases

Stronger acid more readily donates a proton Weaker acid less readily donates a proton Stronger base more readily accepts a proton Weaker base less readily accepts a proton

Lowry

h Conjugate Acid-Base Pairs

Species that differ from each other by \mathbf{H}^{+}

NH_{3} accepts a proton to become NH_{4}^{+}and so is a base
$\mathrm{NH}_{4}{ }^{+}$donates a proton to become NH_{3} and so is an acid
NH_{4}^{+}and NH_{3} differ by H^{+}and thus are a conjugate acid-base pair
$\mathrm{H}_{2} \mathrm{O}$ donates a proton to become OH^{-}and so is
 an acid
OH^{-}accepts a proton to become $\mathrm{H}_{2} \mathrm{O}$ and so is a base
$\mathrm{H}_{2} \mathrm{O}$ and OH^{-}differ by H^{+}and thus are a conjugate acid-base pair
Reactions Lead Preferentially to the Production of the Weaker Acid and Base

stronger stronger weaker weaker acid base acid base

the above reaction goes mainly to the right

the above reaction goes mainly to the left
The stronger an acid the weaker its conjugate base
The stronger a base the weaker its conjugate acid

I 4.5 Volumetric Analysis

Correct Titrimetric Procedure

Pipette

- Rinse with deionised water - to wash out any impurities
- Then with the solution it is going to contain to wash out the deionised water.
- Fill using a pipette filler - the solution may be poisonous or caustic.
- Read from the bottom of meniscus

- It should be level with the ring on the stem
- And your eye should also be level with this ring.
- Empty into the conical flask and touch tip against the side of the flask.
- DON'T BLOW it is calibrated to allow for the drop in the tip.

Conical flask

- Rinse out with deionised water only.
- Place on white tile - to see colour change more easily.
- Mix continuously during the titration.
- Add only a few drops of indicator (They are weak acids or bases and may upset the results)
- Wash down any drops on the side of the flask with deionised water.
(This won't affect amount of reactant in flask or change the result.)

Rinsing drops from side of conical flask

VOLUMETRIC ANALYSIS

f Burette

- Rinse with deionised water
- Then with the solution it is going to contain
- Fill using a funnel then
- Remove funnel (as drops may fall from it or it may dip into the liquid giving a false level).
- Remove the air bubble from the tip by opening the tap quickly
- Read from the bottom of meniscus - with eye level with this point. (KMnO_{4} - read from the top of the meniscus)
- Don't put NaOH in burette it may react with glass of burette or block tap [not really valid now]

Volumetric Flask

- Long thin neck makes it accurate.
- Make up to mark with deionised water - use a dropper near end point
- Read from bottom of meniscus at eye level,
- Get bottom of meniscus level with calibration mark.
- Make sure it is at room temperature - it is calibrated at $20^{\circ} \mathrm{C}$.
- Mix by inverting 10 times to ensure solution is homogeneous - (long thin neck makes this necessary).

Titration

- Use the correct indicator [SAWBMO see bottom of page]

- Only 3-4 drops of indicator [indicators are weak acids or bases so may affect result if too much added]
- Mix well
- Add from burette drop by drop near the end point.
- End Point - Point at which reaction is complete - (shown by colour change)
- Do one rough and 2 accurate titres
- Two accurate should be within $0.1 \mathbf{c m}^{3}$
- Average the 2 accurate titres
- Identify the standard solution [one given the concentration of] - for calculations to follow.

Indicator	Initial Colour	Final Colour
Phenolphthalein	Colourless in acid	Pink in alkali
Methyl orange	Red / pink in acid	Yellow in alkali
Litmus	Red in acid	Blue in alkali
Starch	Blue when iodine $\left[I_{2}\right]$ present	Colourless when iodine absent
$\mathbf{M n O}_{\mathbf{4}}{ }^{1-}$	Pink when present	Colourless when absent [all turned to $\left.\mathrm{Mn}^{2+}\right]$
Eriochrome Black	Wine red when Ca^{2+} present	Blue when Ca^{2+} gone

Indicator Choice

Remember which indicator using these "Eskimo" words. The second and third ones are the most important

"Eskimo" word	Acid/base combination	Indicator to use
SASBANY	Strong Acid Strong Base	ANY
SAWBMO	Strong Acid Weak Base	Methyl Orange
WASBPH	Weak Acid Strong Base	Phenolphthalein
WAWBNONE	Weak Acid Weak Base	NONE

I Strong / Weak Acids and Bases

Class	Definition	Examples
Strong acids	Dissociate [splits up] fully in aqueous solution	$\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
Weak acids	Only dissociate partly in aqueous solution	$\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCN}$
Strong bases	Dissociate [splits up] fully in aqueous solution	$\mathrm{NaOH}, \mathrm{KOH}$
Weak bases	Only dissociate partly in aqueous solution	$\mathrm{NH}_{4} \mathrm{OH}$

Solutions

Standard Solution is one whose concentration is known accurately

Standardise means to find the concentration of a solution using titration
Primary Standard is a pure compound with a high molecular mass from which solutions of known concentration can be made. A Primary Standard Solution is
Pure, 100% Soluble and Stable once made up.

The following can't be used as Primary Standards

- $\mathrm{MnO}_{4}{ }^{-}$and sodium thiosulphate because they can't be got pure.
- Iodine $\left[I_{2}\right]$ because it sublimes.
- KOH or NaOH because they absorb CO_{2} and moisture from the atmosphere

Secondary Standard

Make up a solution and then standardise this solution using a primary standard. This secondary standard can then be used to standardise other solutions e.g. KMnO_{4}

EXPERIMENT: Hydrochloric Acid Standardisation using 0.1 M Sodium Carbonate

- Pipette $25 \mathrm{~cm}^{3}$ dil. HCl into a $250 \mathrm{~cm}^{3}$ volumetric flask
- Make up to the mark with deionised water (dilutes acid to a factor of 10)
- Mix well to make homogeneous
- Pipette $20 \mathrm{~cm}^{3}$ of diluted HCl into a conical flask
- Add a few drops of methyl orange indicator [SAWBMO] it turns pink
- Add standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution [0.1 M] from burette
- Mix constantly
- Wash any drops from the side of flask with deionised water [doesn't affect amount of acid in flask]
- Note volume on burette as indicator changes colour (red/pink to orange/yellow)
- Do one rough and two accurate titres and take the average of two accurate

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

- Let $\mathbf{a}=$ values for acid and \mathbf{b} the values for the base
- Assume average titre $=19.5 \mathrm{~cm}^{3}$ for calculation in this example.
-

$$
\text { Use } \frac{\mathbf{V}_{\mathrm{a}} \mathbf{M}_{\mathrm{a}}}{\mathbf{n}_{\mathrm{a}}}=\frac{\mathbf{V}_{\mathrm{b}} \mathbf{M}_{\mathrm{b}}}{\mathbf{n}_{\mathrm{b}}}
$$

$\mathrm{V}_{\mathrm{a}}=20 \mathrm{~cm}^{3}$ [pipette volume]
$\mathrm{M}_{\mathrm{a}}=$? [Molarity of acid]
$\mathrm{n}_{\mathrm{a}}=2$ [moles of acid in balanced equation]

$\mathrm{V}_{\mathrm{b}}=19.5 \mathrm{~cm}^{3}$ [average titre]
$\mathrm{M}_{\mathrm{b}}=0.1$ [Molarity of base i.e. standard solution]
$\mathrm{n}_{\mathrm{b}}=1$ [moles of base in balanced equation]

$$
\begin{gathered}
\mathbf{M}_{a}=\frac{\mathbf{V}_{\mathbf{b}} \mathbf{M}_{\mathbf{b}} \mathbf{n}_{\mathbf{a}}}{\mathbf{V}_{\mathbf{a}} \mathbf{n}_{\mathbf{b}}} \\
\mathbf{M}_{\mathrm{a}}=\frac{19.5 \times 0.1 \times 2}{20 \times 1}=0.195
\end{gathered}
$$

Multiply by 10 for dilution \quad Answer $=\mathbf{1 . 9 5} \mathbf{~ M}$

VOLUMETRIC ANALYSIS

EXPERIMENT: Making a Salt (Sodium Chloride)

- Pipette $25 \mathrm{~cm}^{3}$ of 1 M NaOH into a conical flask
- Add a few drops of phenolphthalein indicator [SASBANY] - it should turn pink
- Add 1 M HCl from a burette and note the volume at which the indicator goes colourless i.e. when the NaOH has been completely neutralised.
- Repeat this till two values agree to within $0.1 \mathrm{~cm}^{3}$ and note this volume.
- This is the volume of HCl needed to completely neutralise the NaOH .
- Pipette $25 \mathrm{~cm}^{3}$ of fresh 1 M NaOH into a clean beaker
- Do not add any indicator
- Add the amount of HCl need to completely neutralise the NaOH
- Gently heat the solution until all the water has evaporated.
- There will be a sample of sodium chloride in the bottom of the beaker

1 EXPERIMENT: Find the Concentration of Ethanoic acid

 in Vinegar as \% (w/v)- Pipette $20 \mathrm{~cm}^{3}$ of 0.1 M NaOH into conical flask,
- Add a few drops of phenolphthalein indicator [WASBPH], turns pink.
- Dilute vinegar by factor of $10\left[25 \mathrm{~cm}^{3}\right.$ into a $250 \mathrm{~cm}^{3}$ volumetric flask]
- Rinse the burette with deionised water and then with ethanoic acid
- Put diluted ethanoic acid (vinegar) in burette

- Remove the air bubble by opening the tap quickly.
- Add ethanoic acid from burette to the NaOH in flask - mixing constantly
- Wash any drops from side with deionised water [doesn't affect amount acid in flask]
- When pink turns colourless note volume (adding drop by drop near end).
- Do one rough and two accurate titres and take the average of the two accurate
- Let $\mathrm{a}=$ values for the acid [ethanoic acid] and b for base [sodium hydroxide]
- Assume average titre $=24 \mathrm{~cm}^{3}$ for calculation in this example.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}=\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=24 \mathrm{~cm}^{3} \text { [average titre] } \\
& \mathrm{M}_{\mathrm{a}}=?[\text { molarity of acid }] \\
& \mathrm{n}_{\mathrm{a}}=1[\text { moles of base in balanced } \\
& \text { equation] } \\
& \mathrm{V}_{\mathrm{b}}=20 \mathrm{~cm}^{3}[\text { pipette volume }] \\
& \mathrm{M}_{\mathrm{b}}=0.1 \text { [Molarity of base }- \text { standard } \\
& \text { solution] } \\
& \mathrm{n}_{\mathrm{b}}=1 \text { [moles of base in balanced } \\
& \text { equation] }
\end{aligned}
$$

$$
\mathbf{M}_{\mathbf{a}}=\frac{\mathbf{V}_{\mathbf{b}} \mathbf{M}_{\mathbf{b}} \mathbf{n}_{\mathrm{a}}}{\mathbf{V}_{\mathbf{a}} \mathbf{n}_{\mathbf{b}}}=\frac{20 \times 0.1 \times 1}{24 \times 1}=\mathbf{0 . 0 8 3}
$$

Multiply by 10 for dilution
Answer $=\mathbf{0 . 8 3} \cdot \mathbf{M}$
Find the \% (w/v) concentration of the vinegar.
$0.83 \times 60=49.99 \mathrm{~g}$ per litre
$=4.99 \mathrm{~g}$ per $100 \mathrm{ml}=\mathbf{4 . 9 9 \%}(\mathbf{W} / \mathbf{V})$ using Ammonium Iron(II) Sulphate

- Use 0.1 M Ammonium iron (II) sulphate as standard solution
- Acidified using $\mathrm{H}_{2} \mathrm{SO}_{4}$ to prevent air oxidising Fe^{2+} to Fe^{3+}
- KMnO_{4} in burette - read from top of meniscus - dark colour
- Pipette $20 \mathrm{~cm}^{3}$ ammonium iron (II) sulphate into conical flask
- Add $10 \mathrm{ml} \mathrm{cm}{ }^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ to flask to make sure that Mn (VII) is fully reduced to $\mathbf{M n}^{\mathbf{2}}$. Brown precipitate of $\mathbf{M n O}_{\mathbf{2}}$ formed if insufficient acid used.
- Pink colour is slow to disappear for first few drops then goes quickly because Mn^{2+} is an autocatalyst i.e. a product of reaction that catalyses the reaction.
- $\mathrm{MnO}_{4}{ }^{-}$acts as its own indicator. End point when permanent pink colour
- MnO_{4}^{-}is oxidising agent and Fe^{2+} is reducing agent
- Assume average titre $=19.5 \mathrm{~cm}^{3}$ for calculation in this example.
$\mathrm{MnO}_{4}{ }^{1-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+}=\mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { Calculation - use: } \frac{\mathrm{V}_{\mathrm{o}} \mathrm{M}_{\mathrm{o}}}{\mathrm{n}_{\mathrm{o}}}=\frac{\mathrm{V}_{\mathrm{r}} \mathbf{M}_{\mathrm{r}}}{\mathrm{n}_{\mathrm{r}}} \Rightarrow \mathbf{M}_{\mathbf{o}}=\frac{\mathbf{V}_{\mathbf{r}} \times \mathbf{M}_{\mathbf{r}} \times \mathbf{n}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{o}} \times \mathbf{n}_{\mathbf{r}}} \\
& \mathrm{M}_{\mathrm{o}}=\frac{20 \times 0.12 \times 1}{19.5 \times 5}=\mathbf{0 . 0 2 \mathbf { M }}
\end{aligned}
$$

EXPERIMENT: Find the amount of Iron in an Iron Tablet and hence the Percentage of Iron in the Tablet.

- Find the mass of the five iron tablets- [to give average]. Let us say 1.8 g
- Crush tablets with pestle and mortar in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$
- Easier to dissolve and stops atmospheric oxygen oxidising $\mathbf{F e}^{2+}$ to $\mathbf{F e}^{3+}$
- Transfer the paste with washings to beaker and stir to dissolve the paste.
- Using a funnel transfer solution into $250 \mathrm{~cm}^{3}$ volumetric flask with washings
- Make up to mark with deionised water. Eye and meniscus both level with mark.
- Invert 10 times to make solution homogeneous.
- Pipette $20 \mathrm{~cm}^{3}$ of tablet solution into conical flask.
- Add $20 \mathrm{~cm}^{3}$ of dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ acid to ensure full reaction
- Titrate with $0.02 \mathrm{~m} \mathrm{KMnO}_{4}$ from burette until a permanent pink colour
- $\mathrm{MnO}_{4}{ }^{1-}$ is oxidising agent and Fe^{2+} is reducing agent

$$
\mathrm{MnO}_{4}{ }^{1-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+}=\mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

- Mn^{2+} is an autocatalyst (product of reaction that catalyses reaction)
- Do one rough and two accurate titres. Average the 2 accurate
- Assume average titre $=17.5 \mathrm{~cm}^{3}$ for calculation in this example

Calculate the Molarity of Iron Sulphate solution Calculate Mass of Fe in each use: $\frac{\mathrm{V}_{\mathrm{o}} \mathrm{M}_{\mathrm{o}}}{\mathrm{n}_{\mathrm{o}}}=\frac{\mathrm{V}_{\mathrm{r}} \mathrm{M}_{\mathrm{r}}}{\mathrm{n}_{\mathrm{r}}} \Rightarrow \mathbf{M}_{\mathrm{r}}=\frac{\mathbf{V}_{\mathbf{0}} \times \mathbf{M}_{\mathbf{0}} \times \mathbf{n}_{\mathbf{r}}}{\mathbf{V}_{\mathbf{r}} \times \mathbf{n}_{\mathbf{o}}} \quad \begin{aligned} & \text { Tablet } \\ & 1.225 / 5=\mathbf{0 . 2 4 5} \mathbf{g}\end{aligned}$

$$
\mathrm{M}_{\mathrm{r}}=\frac{17.5 \times 0.02 \times 5}{20.0 \times 1}=\mathbf{0 . 0 8 7 5} \mathbf{~ M}
$$

Calculate Moles of Fe in $250 \mathrm{~cm}^{3}$ of Solution

$$
\frac{0.0875 \times 250}{1000}=\mathbf{0 . 0 2 1 8 7 5} \text { moles }
$$

Calculate Mass of $\mathbf{F e}$ in $250 \mathbf{~ c m}^{3}$ of Solution
Mass $=$ molarity x molar mass

$$
=0.021875 \times 56=\mathbf{1 . 2 2 5} \mathbf{g}
$$

Calculate the Mass of each Tablet
Mass of 5 tablets $=1.8 \mathrm{~g}$
Mass of 1 tablet $=1.8 / 5=\mathbf{0 . 3 6} \mathbf{g}$
Calculate \% Fe in each Tablet
$\%$ iron $=\frac{\text { mass of } \mathrm{Fe}}{\text { Mass of } 1 \text { tablet }} \times 100$
$=\frac{0.245}{0.36} \times 100=\mathbf{6 8 . 0 6 \%}$

VOLUMETRIC ANALYSIS

EXPERIMENT: To find the Molar Mass of Hydrated

 Sodium Carbonate [$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$], the Number of Molecules of Water of Crystallisation and the Percentage of Water.- weigh out 3.15 g washing soda crystals $\left[\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{xH}_{2} \mathrm{O}\right]$
- dissolve in $100 \mathrm{~cm}^{3}$ deionised water, stir
- transfer to $250 \mathrm{~cm}^{3}$ volumetric flask with washings,
- make solution up to mark - bottom of meniscus and eye level with the mark
- invert 20 times to make homogeneous
- pipette $25 \mathrm{~cm}^{3}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution into conical flask
- add 3 drops of methyl orange [SAWBMO] indicator - it goes yellow
- fill burette with standard 0.15 M HCl solution
- titrate: colour change from yellow to red/pink
- do one rough and 2 accurate - average the 2 accurate titres
- Assume average titre $=15.0 \mathrm{~cm}^{3}$ for calculation in this example.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl}=2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Calculate the Molarity of the Sodium Carbonate

use: $\frac{V_{a} M_{a}}{n_{a}}=\frac{V_{b} M_{b}}{n_{b}} \Rightarrow \quad \mathbf{M}_{b}=\frac{V_{a} \times M_{a} \times n_{b}}{\mathbf{V}_{b} \times \mathbf{n}_{a}}$

$$
\mathrm{M}_{\mathrm{b}}=\frac{15 \times 0.15 \times 1}{25 \times 2}=\mathbf{0 . 0 4 5} \mathrm{M}
$$

Find the Molar Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{x H}_{2} \mathrm{O}$
Concentration of sodium carbonate in mol^{-1}

$$
=0.045
$$

Concentration of sodium carbonate in $\mathrm{gl}^{-1}=3.15 \times 4=12.6 \mathrm{~g} \mathrm{l}^{-1}$ [because we had $250 \mathrm{~cm}^{3}$]
Mass of 0.045 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} \quad=\frac{\text { mass }}{\text { No. of moles }}=\frac{12.6}{0.045}=\mathbf{2 8 0}$
Calculate the value of \mathbf{x} in the formula
Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}=46+12+48+18 \mathrm{x}=106+18 \mathrm{x}$ [where x is the mass of water]
$106+18 \mathrm{x}=280$ [molar mass]
$\Rightarrow 18 \mathrm{x}=280-106=174$ [total mass of water in crystal in mass units]
$\Rightarrow \mathrm{x}=\frac{174}{18}=9.7 \Rightarrow \mathbf{N a}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}} \cdot \mathbf{1 0} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
Calculate the percentage of water in the crystals
Molar mass of hydrated sodium carbonate $=280$
Percentage of water of crystallisation in the compound $=\frac{174}{280} \times 100=\mathbf{6 2 . 1 4 \%}$

EXPERIMENT: Calculate the concentration of a Thiosulphate Solution Using 0.06 M Iodine Standard Solution

- Neither sodium thiosulphate nor iodine are suitable as primary standards
- For each titration make up $\mathbf{0 . 0 6 M}$ iodine $\left(\mathbf{M}_{\mathbf{0}}\right)$ solution as follows
- Pipette $\mathbf{2 5} \mathrm{cm}^{\mathbf{3}}\left(\mathbf{V}_{\mathrm{o}}\right)$ of $\mathbf{0 . 0 2} \mathbf{M}$ potassium iodate standard solution into the conical flask
- Add $\mathbf{2 0} \mathrm{cm}^{\mathbf{3}}$ of dilute $\mathbf{H}_{2} \mathbf{S O}_{4}$, and $\mathbf{1 0} \mathrm{cm}^{\mathbf{3}}$ of $\mathbf{0 . 5 M ~ K I}$ solution [excess] (KI solution keeps the iodine in solution)
- Note the reddish/brown colour of liberated iodine.
- Do this for each titration
- Weigh 6.25 g of sodium thiosulphate crystals onto a clock glass
- Transfer crystals to beaker containing $100 \mathrm{~cm}^{3}$ of de-ionised water
- Stir and when dissolved transfer to $250 \mathrm{~cm}^{3}$ volumetric flask with washings
- Make up to mark with de-ionised water. Invert 20 times.
- Add the sodium thiosulphate from the burette
- When solution becomes straw coloured add a few drops of starch indicator - if added too early it will complex with the iodine and ruin the experiment
- Blue colour seen.
- Continue adding the thiosulphate solution until the solution in flask becomes colourless - when all the I_{2} is gone.
- Do one rough and two accurate titres. Average the two accurate titres.
- Assume average titre $=30 \mathrm{~cm}^{3}$ for calculation in this example.
- The iodine reacts with the sodium thiosulphate according to the equation

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
$$

- Iodine is the oxidising agent and thiosulphate is the reducing agent

Iodine

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=25 \mathrm{~cm}^{3} \\
& \mathrm{M}_{\mathrm{o}}=0.06 \mathrm{M} \\
& \mathrm{n}_{\mathrm{o}}=1
\end{aligned}
$$

Thiosulphate
$\mathrm{V}_{\mathrm{r}}=30 \mathrm{~cm}^{3}$
$\mathrm{M}_{\mathrm{r}}=$?
$\mathrm{n}_{\mathrm{r}}=2$

$$
\begin{aligned}
& \frac{V_{o} \times M_{o}}{n_{o}}=\frac{V_{r} \times M_{r}}{n_{r}} \Rightarrow M_{r}=\frac{V_{\mathbf{o}} \times \mathbf{M}_{\mathbf{o}} \times \mathbf{n}_{r}}{V_{\mathbf{r}} \times \mathbf{n}_{\mathbf{o}}} \\
& \Rightarrow M_{\mathrm{r}}=\frac{25 \times 0.06 \times 2}{30 \times 1}=\frac{3}{30}=\mathbf{0 . 1 ~ M}
\end{aligned}
$$

VOLUMETRIC ANALYSIS

S EXPERIMENT: Determine the \% (w/v) of Sodium Hypochlorite in Bleach using 0.1 M Sodium Thiosulphate

- Pipette $\mathbf{2 5} \mathrm{cm}^{\mathbf{3}}$ concentrated bleach into $\mathbf{2 5 0} \mathrm{cm}^{\mathbf{3}}$ volumetric flask
- Fill up to the mark with deionised water, invert it 20 times.
- Diluted by factor 10 because conc. bleach is dangerous
- Pipette $20 \mathrm{~cm}^{3}$ diluted bleach into conical flask
- Then add $20 \mathrm{~cm}^{3}$ sulphuric acid and $10 \mathrm{~cm}^{3} 0.5 \mathrm{M}$ potassium iodide (KI) solution.
- Note reddish/brown colour of iodine

$$
\mathrm{ClO}^{-}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+}=\mathrm{Cl}^{-}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

- Each hypochlorite molecule produces one iodine molecule
- Add 0.1 M sodium thiosulphate solution from the burette until the solution is a pale yellow (straw) colour
- Add a few drops of starch indicator, note blue colour
- Add thiosulphate drop by drop until colour changes from blue to colourless.
- Do one rough and two accurate titres. Take average of the two accurate titres
- Assume average titre $=14.8 \mathrm{~cm}^{3}$ for calculation in this example.

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
$$

- Iodine is the reducing agent and thiosulphate is the oxidising agent

End point when solution goes colourless

Calculate molarity of iodine and thus sodium hypochlorite ($\mathbf{N a O C l}$)

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
$$

$\mathrm{ClO}^{-}=\mathrm{I}_{2}$ [eqn 1] and $\mathrm{I}_{2}=2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\left[\right.$ eqn 2] therefore $1 \mathrm{ClO}^{-}=2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$
[ClO^{-}is the oxidising agent and $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is the reducing agent]
$\frac{\mathrm{V}_{\mathrm{o}} \mathrm{M}_{\mathrm{o}}}{\mathrm{n}_{\mathrm{o}}}=\frac{\mathrm{V}_{\mathrm{r}} \mathrm{M}_{\mathrm{r}}}{\mathrm{n}_{\mathrm{r}}} \Rightarrow \mathbf{M}_{\mathrm{o}}=\frac{\mathbf{V}_{\mathrm{r}} \times \mathbf{M}_{\mathrm{r}} \times \mathbf{n}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{o}} \times \mathbf{n}_{\mathrm{r}}}$
$\mathrm{M}_{\mathrm{o}}=\frac{14.8 \times 0.1 \times 1}{20 \times 2}=\frac{1.48}{40}=\mathbf{0 . 0 3 7} \mathbf{~ M}$
Multiply by $\mathbf{1 0}$ for dilution
Concentration of hypochlorite in bleach $=0.037 \times 10=\mathbf{0 . 3 7} \mathbf{~ M}$
Calculate mass of hypochlorite in 1 litre
concentration $=$ molarity \times molar mass of sodium hypochlorite

$$
=0.37 \times 74.5=27.57 \mathrm{~g} \mathrm{l}^{-1}[\mathrm{NaOCl}=\mathbf{2 3}+\mathbf{1 6}+\mathbf{3 5 . 5}=\mathbf{7 4 . 5}]
$$

Convert to \% (w/v)
Percentage (w/v) of hypochlorite in bleach $=\frac{27.57}{1000} \times 100=\mathbf{2 . 7 6 \%}$
Questions on this section from Past Exams Year by Year

2009	2008	2007	2006	2005	2004	2003	2002
1	1	1	1	1	1	1	1
						10 b	

a $5 \cdot 1$ Sources of Hydrocarbons

- Coal, natural gas and petroleum are our main sources of hydrocarbons.
- Coal is the fossilised remains of swamp plants while oil is the fossilised remains of marine plankton.
- Natural gas [methane - $\mathbf{C H}_{4}$] is formed with both of these - it is called fire damp in coal mines
- The decomposition of animal waste and vegetation produces methane in slurry pits, coal mines and refuse dumps. This source can be tapped and used as a fuel. Otherwise it can collect and pose the potential

Trapping of oil and gas by impervious rock. hazard of an explosion or fires or suffocation - it is not poisonous.

- Methane produced by the above and also by ruminants such as cows and sheep contributes significantly to the enhanced greenhouse effect.

b 5.2 Aliphatic Hydrocarbons

Aliphatic Consists of Chains of Carbon Atoms

Hydrocarbon
 Made of Carbon and Hydrogen Atoms Only

Homologous Series - Families of organic chemicals are called Homologous Series

They have the following properties

- Same Functional Group
- Same General Formula
- Each differs from its neighbours by $\mathbf{C H}_{\mathbf{2}}$
- Same method of preparation

Homologous Series and their Properties

Name	Functional group	First member of Series	Solubility in water [polar]	Solubility in cyclohexane [non-polar]
Alkanes	C-C	Methane $\mathrm{CH}_{4}\left[\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}\right]$	Insoluble	Soluble
Alkenes	$\mathrm{C}=\mathrm{C}$	Ethene $\mathrm{C}_{2} \mathrm{H}_{4}\left[\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}\right]$	Insoluble	Soluble
Alkynes	$\mathrm{C} \equiv \mathrm{C}$	Ethyne $\mathrm{C}_{2} \mathrm{H}_{2}\left[\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}\right]$	Insoluble	Soluble
Alcohols	$\mathrm{R}-\mathrm{OH}$	Methanol $\mathrm{CH}_{3} \mathrm{OH}\left[\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-1} \mathrm{OH}\right]$	Short Soluble	Short Insoluble
Aldehyde	R - CHO	Methanal HCHO	Short Soluble	Short Insoluble
Ketones	R - CO - R'	Propanone $\mathrm{CH}_{3} \mathrm{COCH}_{3}$	Short Soluble	Short Insoluble
Carboxylic Acids	$\mathrm{R}-\mathrm{COOH}$	Methanoic acid HCOOH	Short Soluble	Short Insoluble
Esters	R - COO-R'	Methylmethanoate HCOOCH_{3}	Short Soluble	Short Insoluble

C 5.3 Alkanes

General Formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$

Saturated
Has only single carbon to carbon covalent bonds

You need to know the formulae and structures of the alkanes up to C_{8} [octane] and the isomers up to C_{5}
You also need to know the formulae and structures of cyclohexane and 2,2,4trimethylpentane

\# Carbons	Name	Structure
1	methane	
2	ethane	
3	propane	
4	butane	
5	pentane	
6	hexane	
7	heptane	
8	octane	

FUELS AND HEATS OF REACTION

Isomers
Same Molecular Formula but Different Structural Formulae
Isomers of Butane

2-methylpropane

Isomers of Pentane

Pentane

2-methylbutane

2,2-dimethylpropane

Other Structural Formulae

d 5.4 Alkenes

General formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$

You need to know the formulae and structures up to C 4

Unsaturated
 They contain a Double carbon to carbon Bond

Planar around the double bond

Tests for Unsaturation

Turn acidified MnO_{4} - from pink to colourless
Decolourise red/brown bromine (water)
Isomers differ by

- Position of double bond

Ethene

Propane

Butane

Pentene

- Branching or Position of methyl group You need to know the structures of but-2-ene and 2-methylpropene

But-2-ene

2 methylpropene

State
Alkenes are gases up to butene $\left[\mathrm{C}_{4}\right]$ under normal conditions.
Longer chain alkenes $\left[\mathrm{C}_{5}-\mathrm{C}_{15}\right]$ are liquids and above this $\left[\mathrm{C}_{16+}\right]$ are solids.

Solubility

Insoluble in water because they are non-polar and water is polar.
Soluble in non-polar solvents such as benzene - like dissolves like

Q EXPERIMENT: Solubility Properties of Methane, Ethene and Ethyne

- Fill a test tube about 75% with water and stopper as shown
- Empty one syringe and connect it to tube that is above water
- Fill the other tube with the gas of your choice and connect it to the tube that goes below the water surface

- Slowly pass the gas through the test tube to the other syringe and note the new volume
- Calculate the percentage of the gas that has dissolved

$$
\% \text { dissolved }=\frac{\text { Initial volume } \times 100}{\text { Final volume }}
$$

- Repeat with the other gases
- Replace the water with cyclohexane and repeat the above

Solvent	Methane	Ethene	Ethyne
Water	insoluble	insoluble	insoluble
Cyclohexane	40%	35%	20%

f5.5 Aromatic Hydrocarbons - Benzene

Aromatic has a benzene ring in its structure

Benzene is a liquid under room conditions

Benzene is the basis of dyestuffs, detergents, herbicides, many pharmaceuticals and indicators such as methyl orange and phenolphthalein
Benzene and many of its derivatives are carcinogenic (can cause cancer) e.g. benzene in petrol - but not all are carcinogenic e.g. aspirin.
Benzene does not decolourise bromine showing that it does not have double bonds
Methylbenzene is used as an industrial solvent for non-polar compounds - it is not carcinogenic

- Insoluble in water because it is non-polar and water is polar.
- Soluble in cyclohexane because both are non-polar.
- Does not react like a normal saturated compound [does not decolourise bromine] because of the delocalised Pi bonds - shown by ring in centre of molecule.

EXPERIMENT: THE Solubility Properties of Methylbenzene

- Put some methylbenzene in test tube
- Add small quantity of solute - stopper and shake
- Open carefully in case there is a pressure build-up
- Examine to see if solute has dissolved
- Non-polar solutes dissolve in methylbenzene but polar solutes do not

Solute	Solute Polarity	Result
Water	Polar	No solution
Iodine	Non-polar	dissolves
Sodium chloride	Polar	No solution
Cooking oil	Non-polar	dissolves

FUELS AND HEATS OF REACTION

h 5.6 Thermochemistry

Endothermic and Exothermic Reactions

Most chemical reaction result in a change in temperature.

Endothermic Reactions

Reactions which use heat and feel cold to the touch are called endothermic.
They have a positive $\Delta \mathbf{H}$ value e.g. $\Delta \mathbf{H}=+123 \mathrm{~kJ} \quad$ [ΔH means heat change]
Changes of state are also accompanied by heat changes.
Liquid turning to gas, and solid to liquid, both use heat and are endothermic. sublimation (solid to gas directly) is also endothermic. $\mathbf{C O}_{\mathbf{2}}$ and $\mathbf{I}_{\mathbf{2}}$ both sublime.
When sherbet or ammonium chloride is dissolved in water the temperature drops so these are examples of endothermic reactions.

Exothermic Reactions

Reactions which produce heat and feel hot to the touch are called exothermic.
They have a negative $\mathbf{\Delta H}$ value e.g. $\Delta \mathbf{H}=-123 \mathrm{~kJ}$
Gas to liquid, liquid to solid and desublimation release heat and are exothermic
The combustion of alkanes and other hydrocarbons is exothermic and produces heat, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. e.g. natural gas in a bunsen burner.
These hydrocarbons are our main source of energy

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-890.7 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Combustion can be explosive especially in short chain members)
I Heat of Reaction $\left[\Delta \mathrm{H}_{\mathrm{r}}\right]$
The heat change in kJ when the numbers of moles stated in the balance equation react

$$
\begin{aligned}
\mathrm{H}_{2}+\mathrm{I}_{2} & =2 \mathrm{HI} & \Delta H & =+52.1 \mathrm{~kJ} \\
\mathrm{~N}_{2}+3 \mathrm{H}_{2} & =2 \mathrm{NH}_{3} & \Delta H & =-92 \mathrm{~kJ} \\
\mathrm{HCl}+\mathrm{NaOH} & =\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} & \Delta H & =-57 \mathrm{~kJ} \\
\mathrm{C}_{8} \mathrm{H}_{18}+12 \frac{1}{2} \mathrm{O}_{2} & =8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O} & & \Delta \mathrm{H}
\end{aligned}=-5512 \mathrm{~kJ}
$$

The average amount of energy in kJ needed to break one mole of bonds of the same type, all species being in the gaseous state.

Breaking the four bonds in a mole of methane to form carbon and hydrogen atoms takes 1648 kJ . What is the energy of C-H bond in methane?
There are $4 \mathrm{C}-\mathrm{H}$ bonds in methane and all are the same so it is $1648 / 4=\mathbf{4 1 2} \mathbf{~ k J ~ m o l}^{-1}$
Heat of Combustion [$\Delta \mathbf{H}_{\mathrm{c}}$]

$$
\begin{aligned}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} & =\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{8} \mathrm{H}_{18}+12 \frac{1}{2} \mathrm{O}_{2} & =8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} & =2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Heat change (in $\mathrm{kJ} \mathrm{mol}^{-1}$) when one mole of a substance is completely burned in excess oxygen

Bomb Calorimeter

Instrument used to measure Heats of Combustion accurately. Also used to find the calorific value of foods.

Different fuels have different Heats of Combustion.

$$
\begin{aligned}
\text { Methane } & =-880.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\text { Ethanol } & =-1371.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

