

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2008

MARKING SCHEME

CHEMISTRY

LEAVING CERTIFICATE 2008

MARKING SCHEME

CHEMISTRY

HIGHER LEVEL

Introduction

In considering the marking scheme the following should be noted.

1. In many cases only key phrases are given which contain the information and ideas that must appear in the candidate's answer in order to merit the assigned marks.
2. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
3. The detail required in any answer is determined by the context and the manner in which the question is asked, and by the number of marks assigned to the answer in the examination paper and, in any instance, therefore, may vary from year to year.
4. The bold text indicates the essential points required in the candidate's answer. A double solidus (//) separates points for which separate marks are allocated in a part of the question. Words, expressions or statements separated by a solidus (/) are alternatives which are equally acceptable for a particular point. A word or phrase in bold, given in brackets, is an acceptable alternative to the preceding word or phrase. Note, however, that words, expressions or phrases must be correctly used in context and not contradicted, and where there is evidence of incorrect use or contradiction, the marks may not be awarded.
5. In general, names and formulas of elements and compounds are equally acceptable except in cases where either the name or the formula is specifically asked for in the question. However, in some cases where the name is asked for, the formula may be accepted as an alternative.
6. There is a deduction of one mark for each arithmetical slip made by a candidate in a calculation.

Outline Marking Scheme

Section A [At least two questions must be answered from this section]

1. (a) Why: 5; (b) Describe: 5×3; (c) Name: 3 Justify: 3 State: 2×3; (d) Calc: (i) 6 (ii) 3 State: 3 Express: 3; (e) Identify: 3.
2. (a) Describe: 5×3; (b) Explain: 6; (c) What: 3; (d) Name: 2×3; (e) Explain: 6; (f) Describe: 6 Name: 3; (g) Calculate: 5.
3. (a) Draw: 5; (b) Write: 2×3; (c) Draw: 3, 6, 3; (d) Plot: 4×3 Explain: 3; (e) (i) 6 (ii) 6 .
4. (a) 6 ; (b) 6 ; (c) 2×3; (d) 6 ; (e) 3,3 ; (f) 2×3; (g) 2×3 or 6; (h) (i) 3 (ii) 3 ; (i) 6 ; (j) 2×3; (k) A 2×3 or $\mathbf{B} 2 \times 3$.
5. (a) Define: $3+2$; (b) State: 3 Explain: 2×3; (c) Bonds: 3×3; (d) 2×3; (e) Explain: 6; (f) Use: 3 Suggest: 3; (g) Account: 2×3 Explain: 3 .
6. (a) (i) What: 5 (ii) Draw: 2×3 (iii) Name: 2×3 (iv) What: 2×3 (v) Example: 3 Give: 2×3; (b) Write: 2×3 Calc: 12 .
7. (a) What: 5 When: 3 Explain: 3; (b) Write: 6 Calc: 12; (c) State: 2×3 Predict: (i) 3 (ii) 3 Explain: 3 Change: 3 Explain: 3.
8. (a) (i) Write: 3, 2 (ii) Define: 3 Show: 3, 3, 3 (iii) Strong: 3 Weak: 9; (b) (i) Expl: 3×3 (ii) Two: $2 \times(2 \times 3)$.
9. (a) Draw: 2×4; (b) Isomer: 6 Indicate: 2×3; (c) Explain: 6; (d) Draw: 6 Give: 3×3 How: 3; (e) Name: 3 Draw: 3
10. (a) (i) Suspended: 3×3 (ii) Dissolved: 3×3 (iii) Test: $4+3$.
(b) Define: (i) \& (ii) $4+3$ (iii) $1^{\text {st }}: 32^{\text {nd }}: 3$ (iv) $1^{\text {st. }}: 2 \times 3 \quad 2^{\text {nd }}: 2 \times 3$.
(c) (i) Define: 4 (ii) States: 2×3 (iii) Name: 3 (iv) Explain: 4×3.
11. (a) (i) Catalyst: 4 (ii) Alcohol: 3 (iii) Draw: 3 Class: 3 (iv) Which: 3 Name: 3 Structure: 3 (v) Use: 3.
(b) (i) Mass: 6 (ii) Moles: 6 (iii) Volume: 6 SUV: 7.
(c) A (i) Explain: $4+3$ (ii) State: 2×3 (iii) What: 3×3 (iv) Name: 3 .
(c) B (i) Name: 4 What: 3 (ii) Pos: 2×3 Neg: 2×3 (iii) What: 3 Why: 3 .

SECTION A

At least two questions must be answered from this section.

QUESTION 1

(a) WHY: vinegar (it) too concentrated/would require very concentrated (corrosive) NaOH solution / to suit concentration of NaOH solution / very large volume* of NaOH needed to be get a reasonable titration / small acid titration volume lowers accuracy /
small acid titration volume increases percentage error [*Allow "value", "figure", "amount"]
[In the absence of adequate qualification, allow 3 marks for "for accuracy", "large volume of NaOH needed", "small titration figure(s) / titration figure(s) too small / end point(s) too low"]
(b) DESCRIBE: rinse pipette (burette) with water //
and then with vinegar //
fill with pipette filler / have bottom of meniscus on mark / read pipette (burette) at eye level (vertically) //
deliver (add, let flow) $25 \mathrm{~cm}^{3}$ to $250 \mathrm{~cm}^{3}$ volumetric flask // available from diagram add deionised (distilled, pure) water until level of water near mark //
add dropwise (by dropper / by pipette / by wash bottle) //
bring bottom of meniscus to (on, at) mark / vol. flask at eye-level (vertical) // stopper and invert several times / mix thoroughly / solution homogeneous (even concentration, same concentration throughout) ANY FIVE: (5×3)
(c) NAME: phenolphthalein / thymolphthalein / thymol blue / cresol purple / neutral red / phenol red / bromothymol blue

JUSTIFY: $\quad \mathbf{p H}$ change (drop, jump down) at end point c11 - c6 (c6 - c11)* / specify indicator range / titration of weak acid-strong base / $\mathbf{p H}$ at end point passes through indicator range
*Change of three to five units of pH required. [Allow "passes through midpoint of range".] Name and Justify are not linked.
STATE: colour before (in base, in $\mathbf{N a O H}$) // colour after (in acid)

phenolphthalein	pink (purple, violet, red) // colourless
thymolphthalein	blue // colourless
thymol blue	blue // yellow
cresol purple	purple (pink, violet) // yellow
neutral red	yellow-brown (yellow, brown) // red
phenol red	red // yellow
bromothymol blue	blue // yellow

[Colour change must be matched with chosen indicator. Allow 3 for reversed colour change.]
(d) CALC:
(i)
$0.11 \mathrm{~mol} \mathrm{l}^{-1} \quad$ [Multiplied (or divided) by 4:loses 3 marks.]

$$
\begin{align*}
& \text { Mean titre }=(22.6+22.7) / 2=22.65 \text { [Loses } 3 \text { if incorrect] } \tag{6}\\
& 22.65 \times M=25.0 \times 0.10 \quad \text { (3) } \quad M=0.11 \tag{3}
\end{align*}
$$

(e) IDENTIFY: methanoic (formic) acid / $\mathbf{H C O O H} / \mathbf{C H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$
[If name \& formula are given and one is incorrect, award marks on basis of first answer given.]

QUESTION 2

(a) DESCRIBE:

Paper chromatography [Lid not required in diagram.]
apply mixture using dropper (capillary tube) / spotting on paper

[Some description of application required.]
about 2 cm above eluent* / just above (or below: see note 2) eluent
place in tank (beaker, other suitable container) with eluent*
elute (solvent moves up - or down - see note 1)
state or show separation of components of mixture
Thin-layer chromatography [Lid not required in diagram.]

apply mixture using dropper (capillary tube) / spotting on plate
[Some description of application required.]
about 2 cm above eluent* / just above eluent*
place plate in tank (beaker, other suitable container) with eluent*
elute (solvent moves up - see note 1)
state or show separation of components of mixture

Column chromatography

solvent	dissolve mixture in eluent* // add to column / with mixture
add mixture to column // add eluent*	
fine powder	continue to add eluent* so that it flows through column glass wool separation occurs / bands shown collect components / show separation into bands
* Accept mobile phase, solvent or named solvent	

Note 1: The elution stage (point 4 above) must be clearly cited, either by a statement to that effect, or by clearly shown (labelled) solvent fronts in the case of paper or thin-layer chromatography.

Note 2: In paper chromatography, the solvent can be at the top of the tank and move down the paper.
Note 3: If no diagram, or diagram without at least one label, deduct 3,but only if at least 3 marks have been awarded.
(b) EXPLAIN: diff. adsorbance on (affinity for, attraction for, interaction with, partitioning between) mobile (or name) and (or) stationary (or name) phases
(c) WHAT: do not mix / do not dissolve in each other
(d) NAME: name // plant material [Correct order not required.]

clove oil (eugenol) // cloves	rose oil // rose petals	oil of lavender // lavender
citrus (orange, lemon, grapefruit) oil // orange, etc., skins	oil of thyme // thyme	
oil of fennel // fennel	other correct name // plant material	

(e) EXPLAIN: release of pressure / prevents build up of steam / avoids explosion
[allow 3 marks for 'safety' without further correct clarification]
(f) DESCRIBE: cloudy liquid / milky / white (creamy) liquid
[Allow 3 marks for " emulsion".] Cancelling applies
NAME: \quad solvent extraction / shake with suitable solvent (cyclohexane, ether, etc.)
[Allow 3 marks for mention of 'cyclohexane' etc. without qualification]
(g) CALCULATE: $\mathbf{1 . 2 5} \%$

$$
\begin{equation*}
0.25 / 20 \quad(3) \quad \times 100=1.25 \tag{5}
\end{equation*}
$$

QUESTION 3

(a) DRAW:
$\underline{\text { OR circle (ball, sphere, ring) with flames rising }}$
[Diagram need not show box or other border.]
(b) WRITE: $\quad \mathbf{H}_{2} \mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{H}_{\mathbf{2}} \mathrm{O}+\mathbf{1} / \mathbf{O}_{\mathbf{2}} / \mathbf{2 H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{O}_{\mathbf{2}} \quad$ FORMULAS: (3) BALANCING: (3)
(c) DRAW: apparatus with hydrogen peroxide and catalyst separate
arrangement for mixing at a precise time (see diagrams and note)

Note: Allow "addition of solid catalyst followed by immediate stoppering" only if clearly stated.
Completely unlabelled diagram (-3)
suitable method of monitoring rate shown on diagram \{graduated cylinder over water / graduated gas syringe / pressure sensor (manometer) / balance\}
Note: Allow syringe method only if stated that liquid volume is subtracted from each reading or that the syringe is pulled back to original level.
(d) PLOT: see sample graph overleaf
axes accurately labelled with numbers //
axes with correctly labelled units (quantities) //
eight points accurately plotted //
curve accurately drawn from origin
Note: If not on graph paper, accuracy must be checked with ruler.
EXPLAIN: greatest rate // highest concentration of $\mathrm{H}_{2} \mathrm{O}_{2} / /$ most collisions
[Accept "rate decreases". Do not accept "amount" for "concentration".]
(e) (i): see graph overleaf
$4.0-6.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ (from correctly drawn tangent)
[Allow 3 marks for tangent drawn at 5 minutes]
(ii) $\quad \mathbf{0 . 1 0 4} \mathrm{g} \quad$ [Accept 0.1]
$78 \div 1000 \div 24=0.00325 \mathrm{~mol} \quad(3) \quad \times 32=0.104 \quad(3)$
[Use of 22.4 loses first 3 marks. Use of PV $=n R T$ also loses 3 marks except in cases where it gives the correct answer.]

SECTION B

QUESTION 4

Eight items to be answered. Six marks to be allocated to each item and one additional mark to be added to each of the first two items for which the highest marks are awarded.
(a) $1 s^{2} 2 s^{2} 2 p^{6} /\left[1 s^{2} 2 s^{2} 2 p^{6}\right]^{3+} /\left[\right.$ He] $2 s^{2} 2 p^{6}$
(b) characteristic positive charge for element / atomic number / number of protons in nucleus
[Accept "arranged in increasing atomic number".]
(c) positive (+) charge (attracted to negative) // mass $4 / /$ relatively low velocity (speed) // poor penetration (high absorption, stopped by skin, stopped by few sheet(s) of paper, stopped by few cm of air) // strong ionisation // stable nucleus // gains two electrons to form helium atom // damages cells (causes cancer) // deflected by electric fields // deflected by magnetic fields // causes luminescence (fluorescence, phosphorescence)

ANY TWO: (2×3)
[Accept "low energy" in place of "low velocity". Do not accept "helium nucleus" or " 2 protons +2 neutrons".]
(d) infra-red / IR / ir
(e) (i) $\mathbf{C a}\left(\mathbf{H C O}_{3}\right)_{\mathbf{2}} / \mathbf{F e}\left(\mathbf{H C O}_{3}\right)_{\mathbf{2}} \quad\left[\right.$ Allow $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$]
(ii) $\mathbf{C a S O}_{\mathbf{4}} / \mathbf{C a C l}_{\mathbf{2}} / \mathbf{C a}(\mathbf{O H})_{\mathbf{2}} / \mathbf{M g S O}_{\mathbf{4}} / \mathbf{M g C l}_{\mathbf{2}} / \mathbf{M g}(\mathbf{O H})_{\mathbf{2}} \quad$ [Do not accept names in (i) or (ii)]
[If not designated (i) \& (ii), the order of the question should be followed. If only one is given and is undesignated, assume it is the first.]
(f) platinum // palladium // rhodium [Accept symbols]

ANY TWO: (2×3)
(g) lone pair(s) of electrons in water [Obtainable from correct diagram. Do not accept l.p. for lone pair.] have greater repelling power (repulsion) / push bonds closer
Abbreviation: l.p. : l.p. > l.p. : b.p. > b.p. : b.p. not acceptable without specific mention of repulsion (pushing bonds closer).

OR
Alternative marking: lone pairs in water [Obtainable from correct diagram]
(h)

(i) activation energy correctly shown
(ii) ΔH correctly shown
(i) remove (lower levels of) nitrogen compounds (nitrates) / and phosphorus compounds (phosphates) (6)
[If no other marks have been awarded, allow 3 for "to prevent eutrophication"]
(j) $\mathbf{C}_{2} \mathbf{H}_{5} \mathbf{O H}+\mathrm{Na} \rightarrow \mathbf{C}_{2} \mathbf{H}_{5} \mathbf{O N a}+{ }^{1} \mathbf{1}_{2} \mathrm{H}_{2} / 2 \mathrm{C}_{2} \mathbf{H}_{5} \mathbf{O H}+2 \mathrm{Na} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathbf{O N a}+\mathbf{H}_{2}$
(k) A lightning (electrical storms, thunderstorms) // bacteria \{Rhizobium (legumes, named legume*), Plasmodiophorales (alder), Nitrobacter, Azotobacter, Clostridium, Krebsiella, blue-green algae (Cyanophyceae, Anabaena)\}

* clover, lucerne, pea, bean, lentil, peanut, lupin, wisteria,vetch, etc.

B steel less brittle (more malleable, more ductile) // purer // lower carbon content // great(er) demand // more useful // can be re-worked // more rust resistant
(a) DEFINE: relative (measure of) attraction / number expressing (giving) attraction for shared electrons // for a shared pair of electrons / for electrons in a covalent bond
(b) State: decrease

EXPLAIN: increasing atomic radius / extra shell (shells) / outer electron further from nucleus
increased shielding (screening) offsets increased nuclear charge / effective nuclear charge unchanged (constant) / decreased pulling power of nucleus on shared electrons / lower values represent lower hold on shared electrons
(c) BONDS:

(i)	water:	polar covalent
(ii)	methane:	covalent [Accept "non-polar" or "slightly polar"]
(iii)	magnesium chloride:	ionic (electrovalent)

(d) USE:
(e) EXPLAIN: attractive (repulsive) forces between molecules
(f) USE: very weak intermolecular (weak van der Waals, London, dispersion, weak dipole-dipole) forces (attractions, interactions)
[Accept "they are weak" if it is clear that "they" refers to intermolecular forces.]
SUGGEST: much stronger hydrogen bonds between water molecules
[Accept "no hydrogen bonds in methane".]
(g) ACCOUNT:
polarity of water causes attraction to charged rod
non-polarity of cyclohexane means it is not affected by charged rod
EXPLAIN: stream of water still attracted to rod as molecules (dipoles) arrange themselves with positive pole towards rod [Do not accept "deflected" if unqualified.]

QUESTION 6

(a) (i) WHAT: measure of tendency (likelihood) to auto-ignite (knock, pink, pre-ignite, ignite early, ignite before spark) / number representing ability (tendency, measure) to resist autoigniting (knocking, etc.) / number based on a scale where 2,2,4-trimethylpentane (iso-octane) is assigned a rating of 100 and heptane (n-heptane) a value of 0 / percentage by volume of 2,2,4-trimethylpentane (iso-octane) in a blend (mix) with heptane (n-heptane) that matches the behaviour of the fuel
(ii) DRAW: heptane: $\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{3}} / \mathbf{C H}_{\mathbf{3}}\left(\mathbf{C H}_{2}\right)_{5} \mathbf{C H}_{\mathbf{3}}$ /

[Hs may be omitted in expanded structure.]

2,2,4-trimethylpentane: $\left(\mathbf{C H}_{\mathbf{3}}\right)_{\mathbf{3}} \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}\left(\mathbf{C H}_{\mathbf{3}}\right)_{\mathbf{2}}$ /

[Single Hs may be omitted in expanded structures.]
Note: candidate might expand methyl groups fully.
(iii) NAME: light gasoline / petroleum
naphtha
(iv) WHAT: removal (loss) of hydrogen [Accept "hydrogen produced".] ring (aromatic, cyclic) formation
(v) EXAMPLE: methanol (methyl alcohol, wood spirit) / ether (alkoxyalkane) / methyl-t-butyl ether (MTBE, 2-methoxy-2-methylpropane) / propanol/butanol [Accept correct formula]
GIVE: raise octane number (rating) / decrease knocking / engine (fuel) efficiency
less pollution / less carbon monoxide (CO) produced / cleaner emissions (burn) / more environmentally friendly / alternatives (substitutes) for lead [Accept "less harmful gases", "less harmful to environment", but not "less harmful".]
(b) WRITE: $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathbf{O H}+\mathbf{3 O}_{\mathbf{2}} \rightarrow \mathbf{2 C O}_{\mathbf{2}}+\mathbf{3 H}_{\mathbf{2}} \mathbf{O} \quad$ FORMULAS: (3) BALANCING

CALC: $\mathbf{- 1 3 6 8} \mathrm{kJ} \mathrm{mol}^{-1}$

$2 \mathrm{C}+2 \mathrm{O}_{2}$		$2 \mathrm{CO}_{2}$	- 788 kJ	(3)	
$3 \mathrm{H}_{2}+1{ }^{1} / 2 \mathrm{O}_{2}$		$3 \mathrm{H}_{2} \mathrm{O}$	- 858 kJ	(3)	[Equations not required]
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	\rightarrow	$2 \mathrm{C}+3 \mathrm{H}_{2}+1 /{ }_{2} \mathrm{O}_{2}$	$+278 \mathrm{~kJ}$	(3)	[+ sign not required.]
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2}$	\rightarrow	$2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	- 1368 kJ	(3)	

QUESTION 7

(a) WHAT: state in which rate of forward reaction $\left(\mathbf{R}_{\mathrm{f}}\right)=$ rate of reverse (backward) reaction $\left(\mathbf{R}_{\mathrm{r}}, \mathbf{R}_{\mathrm{b}}\right)$ (5) [Accept "rates equal (the same) in both directions".]

WHEN: no (not ceased, continuing, ongoing)
EXPLAIN: chemical equilibrium a dynamic state / concentrations of reactants and products unchanged (remain the same) because rates equal / loss(es) in one direction balanced by (equal to) gain(s) in other direction / both forward and reverse reactions still occur
(b) WRITE: $\quad[\mathbf{H I}]^{2}$
[$\left.\overline{\left.\mathbf{H}_{2}\right]\left[\mathbf{I}_{2}\right.}\right] \quad$ [Square brackets essential]
CALC:
$46.24 \quad$ [46.2 or $46(-1)]$

(c) STATE: reactions at equilibrium [Must be clear that principle refers to an equilibrium situation.] oppose (minimise, relieve) applied stress(es)* \{disturbance(s)*\}
[*If the word 'stress(es)' or 'disturbance(s)' is replaced by particular examples (e.g. pressure), all three (temperature, pressure and concentration) must be given.]

PREDICT: (i) lower (decreased) yield of hydrogen iodide
(ii) darker (deeper, more intense) pink (purple) / more purple (light purple, pinker)

EXPLAIN: reaction shifts backward (reverse) which is exothermic (heat producing, to raise temperature) / disfavours forward endothermic (heat absorbing, lowering temperature) reaction [Accept "reaction is endothermic so reverse occurs".]
[Answers need not be linked]
CHANGE: none (no change)

EXPLAIN: equal numbers of molecules (moles) on both sides of equation / pressure does not change (has no affect on) the number of molecules (moles) for this reaction

QUESTION 8

(a) (i) WRITE
$\mathbf{2 H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathbf{O}^{+}+\mathrm{OH}^{-} / \mathbf{H}_{2} \mathbf{O}$
$\rightleftharpoons \mathbf{H}^{+}+\mathrm{OH}^{-}$ [Accept with $=$ or \rightarrow]
FORMULAS: (3) BALANCING:
(ii) DEFINE: $\quad\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$/ product of concentrations of hydrogen ions $\left(\mathrm{H}^{+}\right)$and hydroxyl (hydroxide) ions $\left(\mathrm{OH}^{-}\right)$in water
show: in pure water $=\left[\mathbf{H}^{+}\right]\left(\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\right)=\left[\mathbf{O H}^{-}\right] /\left[\mathbf{H}^{+}\right]^{2}\left(\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]^{2}\right)=\mathbf{1} \times \mathbf{1 0}^{-14}$
$\Rightarrow\left[\mathrm{H}^{+}\right]\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=\sqrt{1 \times \mathbf{1 0}^{-14}}=\mathbf{1 \times 1 0 ^ { - 7 }}$
$\mathrm{pH}=-\log 1 \times 10^{-7}=7 \quad\left[\right.$ Accept without ${ }^{\prime} 1 \times$ ']
(iii) STRONG: $\mathbf{0 . 3}$

WEAK: 2.52 (2.5)

$\left[\mathrm{H}^{+}\right]^{2}$	$=$	$1.8 \times 10^{-5} /\left[\mathrm{H}^{+}\right]^{2}$	$=$	9.0×10^{-6}	(3)
0.5					
$\Rightarrow\left[\mathrm{H}^{+}\right]$	=	$\sqrt{ } 9.0 \times 10^{-6}$	$=$	3.0×10^{-3}	(3)
pH	$=$	$-\log 3.0 \times 10^{-3}$	=	2.52	(3)

OR

$$
\mathrm{pH}=-\log \sqrt{K_{\mathrm{a}} \times \mathrm{M}}(3)=-\log \sqrt{1.8 \times 10^{-5} \times 0.5}(3) \Rightarrow \mathrm{pH}=2.52 \text { (3) }
$$

(b) (i) EXPL: settlement (sedimentation, allow to settle) //
flocculation (coagulation, aggregation, clumping, joining together of particles) / adding aluminium sulfate \{aluminium chloride, aluminium(III), alum, iron(III) sulfate (ferric sulfate), iron(III) chloride (ferric chloride), iron(III), polyelectrolytes, lime) //
[Accept correct formula]
decanting the cleared water / allow water to overflow //
filtration / passing through sand and gravel beds
any three: (3×3)
(ii) Two: first chemical (3) its purpose (3) second chemical (3) its purpose (3)

chemical	purpose
carbon dioxide $\left(\mathrm{CO}_{2}\right)$ / sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	lower pH / make more acid / make less basic / if too basic
lime [calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$] / sodium hydroxide [caustic soda, NaOH] sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ / soda ash	raise pH / make less acid / make more basic / if too acidic Note: Accept "alkaline" for "basic" in this box and the one above.
```chlorine \(\left(\mathrm{Cl}_{2}\right)\) / hypochlorite [chlorate(I), \(\mathrm{ClO}^{-}\)] / [Accept HOCl\(]\) ozone ( \(\mathrm{O}_{3}\) ) [Accept suitable salts in this box.]```	sterilise / disinfect   kill micro-organisms (bacteria, germs) /   prevent disease
fluoride $\left(\mathrm{F}^{-}\right)$/ [Accept suitable salts in this box.] hexafluorosilicic (hydrofluorosilicic) acid $\left(\mathrm{H}_{2} \mathrm{SiF}_{6}\right)$ fluosilicate (fluorosilicate, silicofluoride, $\mathrm{SiF}_{6}{ }^{2-}$ )	prevents tooth decay / oral hygiene

[If chemical not identified, give no marks for purpose. However, in the cases of fluorine and chloride, do not give the marks for chemical, but allow the marks for purpose.]

## QUESTION 9

(a) DRAW: Ethanol and
ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and glass wool
aluminium oxide ( $\mathrm{Al}_{2} \mathrm{O}_{3}$ ) and heat (correctly positioned)
[No diagram: (-3) but do not go below 0.]
(b) ISOMER:

[Note: $\mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$ may be expanded. $\mathrm{CH}_{2} \mathrm{CH}_{3}$ may be written $\mathrm{C}_{2} \mathrm{H}_{5}$. In $\mathrm{CH}_{2} \mathrm{CH}_{3}$, the C of $\mathrm{CH}_{3}$ must not be bonded to a planar $C\left(C^{*}\right)$. Single Hs may be omitted in expanded structures.] [Cancelling to be applied]

INDICATE: planar: one C ( $\mathbf{C}^{*}$ in diagrams) at end of double bond (clearly labelled or stated)** (3) tetrahedral: one $\mathbf{C}$ other than at end of double bond (clearly labelled or stated)**
Note: If $C_{3}$ alkene presented, allow the marks for indicating planar and tetrahedral carbons.
** Cancelling applies.
(c) EXPLAIN: having at least one multiple (double, triple) carbon-to-carbon bond / undergoes addition reactions
(d) DRAW:

GIVE:

OR


Name	Formula
1,2-dibromoethane	$\mathrm{CH}_{2} \mathrm{BrCH}$
2	Br
2-bromoethanol	$\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{OH}$
1-bromo-2-chloroethane*	$\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Cl}$

[* accept 1-chloro-2-bromoethane, NaOH, NaBr.]
[Accept dibromoethane if correct formula for 1,2-dibromoethane is given.] [Cancelling applies]
HOW: different negative ions \{anions, two of $\mathrm{Br}^{-}, \mathrm{OH}^{-}, \mathrm{Cl}^{-}$, also water $\left(\mathrm{H}_{2} \mathbf{O}\right)$ \} adding on indicates (supports, shows, proves) presence of positive intermediate / these products indicate the formation of a positive ion first and then the addition of different negative ions (nucleophiles, anions) to it [Can be shown by drawings] [HOW must be specifically related to organic products]
(e) NAME: poly(ethene) / polythene [accept polyethene]

DRAW:

/ $-\mathbf{C H}_{\mathbf{2}}-\mathbf{C H}_{\mathbf{2}}-\mathbf{C H}_{\mathbf{2}}-\mathbf{C H}_{\mathbf{2}}-\quad$ [The end bonds may be omitted]
[The Hs may be omitted in the fully expanded structure]

QUESTION 10: Answer any two of the parts (a), (b) and (c).
(a) (i) SUSPENDED: filter known volume through weighed filter paper //
dry filter paper //
reweigh and find increase (mass of suspended solids) //
find mass (g) $\mathbf{l}^{-1}$ and multiply by $1000 /$ express mass in $\mathbf{m g}^{\mathbf{- 1}} \quad$ ANY THREE: $(3 \times 3)$
(ii) DISSOLVED: evaporate known volume to dryness //
in weighed container (dish, etc.,) //
cool, reweigh and find increase (mass of dissolved solids) //
find mass (g) $\mathbf{l}^{\mathbf{- 1}}$ and multiply by $1000 /$ express mass in $\mathbf{m g}^{\mathbf{1}} \quad$ ANY THREE: $(3 \times 3)$ [Accept "weight" for "mass"]
(iii) TEST: add silver(I) nitrate (silver nitrate, $\mathbf{A g N O}_{3}$ ) solution and nitric acid //
white precipitate (ppt) / precipitate (ppt) soluble in ammonia ( $\mathbf{N H}_{3}$ ) solution (4+3)
[Note: the two points are not treated as linked for the purposes of marking.]
(b) DEFINE: (i) loss (decrease) of electrons
(ii) increase (rise, gain) in oxidation number
[If not designated (i) and (ii), the order in the question should be followed. One undesignated is assumed to be the first.]
(iii) $\quad 1^{\text {st }} \mathbf{I}^{-}$(iodide ion) / I (-1) / I / arrow labelled "oxidised (oxidation)" from I-
$2^{\text {nd }} \quad \mathbf{I}_{\mathbf{2}}$ (iodine molecule) / I (0) $/ \underset{\mathbf{0}}{\mathbf{I}_{\mathbf{2}}} / \mathbf{I}$
[If not designated $1^{\text {st }}$ and $2^{\text {nd }}$, the order in the question should be followed. One undesignated is assumed to be the first.]
$\begin{array}{lllllll}\text { (iv) } & 1^{\text {st }} & \mathrm{ClO}^{-}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cl}^{-}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \text { [Cancelling applies] } & (2 \times 3) \\ 2^{\text {nd }} & \mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathbf{2 I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-} & \\ \text { [Cancelling applies] } & (2 \times 3)\end{array}$
(c) (i) DEFINE: discrete (fixed, restricted, definite, specific) energy of electron /
energy of electron in orbit /
orbit (shell) which electrons of equal energy can occupy
(ii) STATES: ground: in lowest energy state / in $\mathrm{n}=\mathbf{1}$ level (shell) / in $\mathbf{1 s}$ orbital
excited: higher energy state / in $\mathrm{n}>1$ level (shell) / in orbital other than 1s
[If not designated 'ground' and 'excited' the order in the question should be followed. One undesignated is assumed to be the first.]
(iii) NAME: Balmer series
(iv) EXPLAIN: $\boldsymbol{E}_{\mathbf{2}}-\boldsymbol{E}_{\mathbf{1}}$ : energy difference between higher and level $\mathbf{2}$ / ["higher" \& "lower" required] energy difference between higher (e.g. $E_{2}$ ) and lower (e.g. $\boldsymbol{E}_{1}$ ) level / energy emitted when electron falls from higher to level 2 / energy emitted when electron falls from higher (e.g. $E_{2}$ ) to lower (e.g. $E_{1}$ ) //
$f: \quad$ frequency of line in spectrum //
each line (specific or definite frequency ) produced (due to) electrons falling from particular (some) higher level to particular (some) lower level //
$h$ is Planck's constant / hf is a photon \{quantum, packet (bundle) of energy\} //
the expression indicates that the energy difference $\left(\boldsymbol{E}_{2}-\boldsymbol{E}_{1}\right)$ is proportional to (varies directly with) the frequency $(f)$ /
the energy difference $\left(E_{2}-E_{1}\right)$ is a constant times the frequency $(f)$ /
energy difference $\left(E_{2}-E_{1}\right)$ divided by frequency $(f)$ equals (is, gives) a
constant ANY FOUR: $(4 \times 3)$

QUESTION 11: Answer any two of the parts (a), (b) and (c)
(a) (i) CATALYST: nickel / palladium / platinum / copper [Accept symbol]
(ii) ALCOHOL: propan-1-ol / 1-propanol / n-propyl alcohol
[Accept structural formula] [Not "propanol" unless correct structure shown, but does not
(iii) DRAW:


CLASS: secondary
(iv) wHich: propanal [Accept structure]

NAME: propanoic acid / propionic acid / sod. propanoate / sod. propionate
[OH may be bracketed in condensed structures]

> cancel.]
-

STRUCTURE:

(v) USE: removing nail varnish / cleaning glassware / solvent / chromatography / recrystallisation / dry cleaning / stain removing / grease removing [Do not accept "fuel".]
(b) (i) MASS: 1144 g

$$
\begin{equation*}
143 \times 8=1144 \tag{6}
\end{equation*}
$$

(ii) MOLES: $\mathbf{2 6}$ mol

$$
\begin{equation*}
1144 \div 44(3)=26 \tag{6}
\end{equation*}
$$

To be accepted as a slip, some work must be shown in these calculations.
(iii) VOLUME: 6241

$$
\begin{equation*}
26 \times 24(3)=624(3) \tag{6}
\end{equation*}
$$

SUV: 5281

| $264 \times 8 \div 44 \times 24=1152(4)$ | $264-143=121$ | (3) | $2112-1144=968 \quad(3)$ | $48-26=22 \quad$ (3) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1152-624=528$ | $(3)$ | $121 \times 8 \div 44 \times 24=528(4)$ | $968 \div 44 \times 24=528(4)$ | $22 \times 24=528(4)$ | [Note: subtraction step (3); other step(s) (4)]

[In part (iii), using 22.4 for 24 loses the 3 (4) marks for that step but the candidate is penalised once only. The same applies to the use of $P V=n R T$ except in cases where the correct answer is obtained.]
(c) Answer part A or part B.

A
(i) EXPLAIN: greenhouse gas: atmospheric gas \{gas in atmosphere (air)\} that absorbs \{retains, blocks, prevents escape (loss) of, radiates back\} heat \{infrared (IR, ir) radiation\} / gas that contributes to global warming
acidic oxide: $\quad$ oxide that increases hydrogen ion $\left(\mathbf{H}^{+}\right)$concentration (lowers $\left.\mathbf{p H}\right)$ in water / oxide that gives acidic solution in water / oxide that neutralises base(s) / oxide that reacts with base(s) to give salt(s) (4+3)
(ii) STATE: combustion (burning) // respiration (excretion) // air travel* // sea travel* // land travel* // space travel // deforestation // electricity generating // fermentation (brewing) // baking // landfill (dumps) // refrigeration // aerosols // foams // fire extinguishers

ANY TWO: ( $2 \times 3$ )
*Note: In place of the marks for these points, marks may be given for one example such as "cars"("car emissions") for land travel.
(iii) WHAT: carbonate* ion $\left(\mathrm{CO}_{3}{ }^{2-}\right) / /$ hydrogencarbonate* ion $\left(\mathrm{HCO}_{3}{ }^{-}\right) / /$carbonic acid (hydrogen carbonate, $\mathbf{H}_{\mathbf{2}} \mathbf{C O}_{3}$ ) // hydronium ion $\left(\mathbf{H}_{3} \mathbf{O}^{+}\right) / *$ hydrogen ion $\left(\mathbf{H}^{+}\right)$ANY THREE: $(3 \times 3)$ [* Caution: single solidus]
[* Do not accept salts e.g. "sodium carbonate" or "calcium hydrogencarbonate".]
(iv) NAME: ground limestone (calcium carbonate) / slaked (hydrated) lime (calcium hydroxide) / sodium carbonate / sodium hydroxide / soda ash / magnesite (magnesium carbonate) / dolomite / magnesia / magnesium hydroxide [Allow water]

B
(i) NAME: bauxite

WHAT: sodium hydroxide (caustic soda, $\mathbf{N a O H}$ )

FORMULA: (3) BALANCING:
NEG: $\quad \mathbf{A l}^{\mathbf{3 +}}+\mathbf{3} \mathbf{e}^{-} \rightarrow \mathbf{A l} / \mathbf{2 A l} \mathbf{l}^{3+}+\mathbf{6} \mathbf{e}^{-} \rightarrow \mathbf{2 A I} / \mathbf{4 A} \mathbf{l}^{3+}+\mathbf{1 2} \mathbf{e}^{-} \rightarrow \mathbf{4 A l}$ formula: (3) balancing:
[If not labelled pos. \& neg. or anode \& cathode, the order of the question must be followed.
In the case of one undesignated attempt, assume it to be the first.]
(iii) WHAT: lowers melting point / dissolves alumina (aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$ ) / increased conductivity
(iv) WHY: saves energy / cheaper / avoids litter / prevents loss of aluminium / conservation of natural resources

