

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2014

Marking Scheme

CHEMISTRY

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Introduction

In considering the marking scheme the following should be noted.

1. In many cases only key phrases are given which contain the information and ideas that must appear in the candidate's answer in order to merit the assigned marks.
2. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
3. The detail required in any answer is determined by the context and the manner in which the question is asked, and by the number of marks assigned to the answer in the examination paper and, in any instance, therefore, may vary from year to year.
4. The bold text indicates the essential points required in the candidate's answer. A double solidus (//) separates points for which separate marks are allocated in a part of the question. Words, expressions or statements separated by a solidus (/) are alternatives which are equally acceptable for a particular point. A word or phrase in bold, given in brackets, is an acceptable alternative to the preceding word or phrase. Note, however, that words, expressions or phrases must be correctly used in context and not contradicted, and where there is evidence of incorrect use or contradiction, the marks may not be awarded. Cancellation may apply when a candidate gives a list of correct and incorrect answers.
5. In general, names and formulas of elements and compounds are equally acceptable except in cases where either the name or the formula is specifically asked for in the question. However, in some cases where the name is asked for, the formula may be accepted as an alternative.
6. There is a deduction of one mark for each arithmetical slip made by a candidate in a calculation. This applies to incorrect M_{r} values but only if a candidate shows the addition of all the correct atomic masses and the error is clearly an addition error. If the addition of atomic masses is not shown, the candidate loses 3 marks for an incorrect M_{r}.
7. Bonus marks at the rate of 10% of the marks obtained will be given to a candidate who answers entirely through Irish and who obtains less than 75% of the total marks.

Candidates are required to attempt 8 questions in total. All questions carry equal marks (50).
Section A
At least two questions must be answered from this section.

Section B
 At least five questions must be answered from this section.

Eight items to be answered in Question 4. Six marks allocated to each item and one additional mark to be added to each of the first two items for which the highest marks are awarded.

Note that candidates who attempt Question 10 are required to answer two of the parts (a), (b) and (c) and candidates who attempt Question 11 are required to answer two of the parts $(a),(b)$ and (c) where candidates who answer part (c) may choose A or B.

QUESTION 1

(a) EXPLAIN: concentration (molarity) known (found, got, etc.) by another titration (colorimetry, u.v. spectroscopy)
[Allow 4 for concentration (molarity) known (found, got, etc).]
(b) DISSOLVED AND MADE-UP:
wash (rinse) into beaker of deionised (distilled, pure) water // stir to dissolve //
pour through funnel (down glass rod) into volumetric flask adding rinsings of beaker // add last few drops of deionised water drop by drop (using dropper) to
bring bottom of meniscus level with (up to, on, at) mark reading at eye level $(6+3+3)$
[Stopper and invert does not ensure solution made up to exactly $250 \mathrm{~cm}^{3}$.]['Deionised’ mentioned anywhere in (b) is acceptable for first point.]
(c) STATE: add drop by drop (slowly) / wash down inner sides of conical flask / swirl (shake) flask contents //

EXPLAIN: add dropwise so that end point will be precisely (accurately) detected (correct end point not passed) / one drop of solution would change colour near end point / wash sides so that all reagent(s) (acid) in the reaction mixture / swirl to ensure thorough mixing of reactants
['State' \& 'Explain' to be linked.]
(d) NAME: methyl orange / methyl red / bromophenol blue / bromocresol green

CHANGE: before // after

Name (3)	Colour before (3)	//	Colour after (3)
methyl orange	orange (yellow)	//	red (pink, peach)
methyl red	orange (yellow)	//	red (pink)
bromophenol blue	blue (purple, violet)	//	yellow
bromocresol green	blue	//	yellow

[Colour change must be matched with named indicator.]
(e) CALCULATE: (i) 0.0432 M
[Molarity divided by 4 to get 0.0108 - deduct 3 marks.]

$$
\begin{gathered}
\frac{25 \times M}{1}=\frac{21.6 \times 0.1}{2} \\
M=0.0432
\end{gathered}
$$

[$M=0.04$ or 0.043 , deduct 1 mark for inappropriate rounding off in (i) or for use of 0.04 or 0.043 in (ii) but deduction to made once only.]
(ii) $4.6 \mathrm{~g} \mathrm{l}^{-1}$

$$
\begin{equation*}
0.0432 \times 106=4.5792 / 4.58 / 4.6 \tag{3}
\end{equation*}
$$

(f) \% WATER: $54-54.4 \%$

$$
\begin{align*}
& \text { Hydrated }=2.50 \mathrm{~g} / 250 \mathrm{~cm}^{3} / 10 \mathrm{~g} \mathrm{l}^{-1} \tag{3}\\
& \text { Anhydrous }=1.14-1.15 \mathrm{~g} / 250 \mathrm{~cm}^{3} / 4.58-4.6 \mathrm{~g} \mathrm{l}^{-1} \\
& \text { Water }=1.35-1.36 \mathrm{~g} / 250 \mathrm{~cm}^{3} / 5.4-5.44 \mathrm{~g} \mathrm{l}^{-1} \\
& =>\frac{1.35 / 1.36}{2.5} \times 100 / \frac{5.4 / 5.44}{10} \times 100=54 \% \tag{3}
\end{align*}
$$

Formula mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$		Formula mass of $\mathrm{H}_{2} \mathrm{O}=18$
$\begin{align*} & \mathrm{Na}_{2} \mathrm{CO}_{3} \text { content }=4.6 \mathrm{~g} \mathrm{l}^{-1}[4.5792-4.6] \\ & \mathrm{H}_{2} \mathrm{O} \text { content }=10-4.6= \\ & \begin{array}{r} =5.4 \mathrm{~g} \mathrm{l}^{-1}[5.4-5.4208] \end{array} \\ & \begin{array}{r} \frac{\mathbf{5 . 4}}{\frac{\mathbf{1 8 x}}{\mathbf{4 . 6}}=\frac{\mathbf{1 8 x}}{\mathbf{1 0 6}}} \\ x=\mathbf{6 . 9 - 7} \end{array} \tag{3} \end{align*}$	OR	
$\begin{align*} & \mathrm{Na}_{2} \mathrm{CO}_{3} \text { content }=4.6 \mathrm{~g} \mathrm{l}^{-1}[4.5792-4.6] \\ & \begin{array}{r} \mathrm{H}_{2} \mathrm{O} \text { content }=10-4.6= \\ =5.4 \mathrm{~g} \mathrm{l}^{-1}[5.4-5.4208] \end{array} \\ & \begin{array}{r} \frac{\mathbf{4 . 6}}{\mathbf{1 0 6}}: \frac{\mathbf{5 . 4}}{\mathbf{1 8}} / \mathbf{0 . 0 4 3}: \mathbf{0 . 3} \\ =1: \mathbf{6 . 9 - 7} \end{array} \end{align*}$	OR	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3} \text { content }=1.15 \mathrm{~g} / 250 \mathrm{~cm}^{3}[1.14-1.15] \\ & \begin{aligned} \mathrm{H}_{2} \mathrm{O} \text { content } & =2.5-1.15 \\ & =1.35 \mathrm{~g} / 250 \mathrm{~cm}^{3}[1.35-1.36] \end{aligned} \\ & \begin{array}{r} \frac{\mathbf{1 . 1 5}}{\mathbf{1 0 6}}: \frac{\mathbf{1 . 3 5}}{\mathbf{1 8}} / \mathbf{0 . 0 1 0 9}: \mathbf{0 . 0 7 5} \end{array} \\ & =1: \mathbf{6 . 9 - 7} \end{aligned}$
Hydrated form: $10 \mathrm{~g} \mathrm{l}^{-1}=0.0432 \mathrm{M}$ $\begin{equation*} \text { Formula mass }=\frac{10}{\mathbf{0 . 0 4 3 2}} / 231.5 \tag{3} \end{equation*}$ $\begin{equation*} x=\frac{231.5-106}{18}=6.9-7 \tag{3} \end{equation*}$	OR	Hydrated form: $2.5 \mathrm{~g} / 250 \mathrm{~cm}^{3}=0.0108 \mathrm{~mol}$ $\begin{equation*} \text { Formula mass }=\frac{2.5}{0.0108} / 231.5 \tag{3} \end{equation*}$ $\begin{equation*} x=\frac{231.5-106}{18}=6.9-7 \tag{3} \end{equation*}$
$\begin{align*} & \frac{M_{\mathbf{r}(\mathrm{hyd})}}{106}=\frac{\mathbf{1 0}}{\mathbf{4 . 6}^{*}} / M_{r(\mathrm{hyd})}=230.4[230.4-231.5] \\ & x=\frac{230.4-106}{18}=6.9-7 \tag{3} \end{align*}$	OR	$\begin{aligned} & \frac{\boldsymbol{M}_{\mathbf{r}(\mathrm{hyd})}}{\mathbf{1 0 6}}=\frac{2.5}{\mathbf{1 . 1 5}^{*}} / M_{r(\mathrm{hyd})}=230.4[230.4-232.5] \\ & x=\frac{230.4-106}{18}=6.9-7 \end{aligned}$
$\begin{align*} & \frac{\text { mass }_{\text {water }}}{\mathbf{1 0 6}}=\frac{5.4}{4.6}[5.4-5.4208][4.5792-4.6] / \tag{3}\\ & \text { mass }_{\text {water }}=124.4 \tag{3}\\ & x=\frac{124.4}{18}=6.9-7 \tag{3} \end{align*}$	OR	$\begin{align*} & \frac{\text { mass }_{\text {water }}}{\mathbf{1 0 6}}=\frac{\mathbf{1 . 3 5}}{\mathbf{1 . 1 5}}[1.35-1.36][1.14-1.15] / \\ & \text { mass }_{\text {water }}=124.4 \quad[124.4-125.5] \\ & x=\frac{124.4}{18}=\mathbf{6 . 9 - 7} \tag{3} \end{align*}$

[Reminder: second 3 may be awarded consequentially.]

QUSESTION 2

(a) PURPOSE: to allow time for reaction / to bring reaction to completion / to maximise yield / to speed up slow reaction / to heat / to supply activation energy // without losing volatile material (ethanol, vapour, solvent) / without flask boiling dry

NAME: base (alkaline)-catalysed hydrolysis / saponification
[Accept ‘substitution’.]
(b) SUBSTANCE: ethanol
(c) EXPLAIN: to precipitate (isolate, separate) the soap / soap insoluble in brine
(d) WHY: to remove sodium hydroxide (NaOH) / sodium hydroxide could burn skin (eyes) when soap used / sodium hydroxide is corrosive (harmful, dangerous) //

HOW: brine (salt solution) / ice-cold water
(e) DRAW
or
NAME:

WHERE: in the brine / filtrate
[Do not accept 'in the flask' unless correct flask specified, by drawing or description, e.g. flask in Stage 4, or named as Buchner.]
(f) GIVEN: $\quad 4.59 \mathrm{~g}$
$\frac{4.45}{890} \quad(3)=\mathbf{0 . 0 0 5} \mathrm{mol}$ fat
$0.005 \times 3=\mathbf{0 . 0 1 5} \mathrm{mol}$ soap
$0.015 \times 306=\mathbf{4 . 5 9} \mathrm{g}$

For incorrect M_{r} (for 890 or 306), apply usual deductions of -3 and -1 , respectively. See page 1.
[For yield in g of 4.6, deduct 1 mark]
(g) EXPLAIN: $\quad \mathbf{C}_{17} \mathbf{H}_{35}$ \{hydrocarbon part (end)\} is non-polar (hydrophobic) and dissolves oils (nonpolar substances);
$-\mathrm{COO}^{-} \mathrm{Na}^{+}$\{ionic (hydrophilic) part (end)\} attracted to (dissolves) salts in sweat
[Charges required.]
[Use of terms including emulsions, colloids and micelles possible but answer must refer to structure of soap to be acceptable.]

QUESTION 3

(a) EXPLAIN: change in concentration per unit time of one reactant (product) / rate of change of concentration of one reactant (product) /
change in concentration of one reactant (product) time
(b) (i) DESCRIBE: cloudiness / precipitate EXPLAIN: formation of sulfur (S)
(ii) DESCRIBE:
stand flask on cross (mark, print, etc) / set up smart phone lux-meter app // note time (stop clock) when cross (mark, print, etc) under flask becomes invisible (obscured) /
note time (stop clock) when mixture reaches certain opacity using smart-phone lux-meter app
(c) PLOT:
both axes correctly labelled with quantity or unit // correct numeric scales on axes //
6 points correctly plotted //
correct curve [Straight line unacceptable.]
[Max 6 if graph paper not used.]

(d) DESCRIBE: rate increases with temperature // exponentially / and rate of increase increases
or
for every steady (regular) interval (e.g. $10 \mathrm{~K}, 10{ }^{\circ} \mathrm{C}$) rise in temperature // rate multiplies by a constant factor (doubles, triples, etc)
EXPLAIN: more collisions reach activation energy / more effective (successful) collisions
['More molecules' instead of 'more collisions' not acceptable.]
(e) USE: 66-72 s

$$
\begin{align*}
& \text { Rate from graph }=0.0145 \mathrm{~s}^{-1}[0.014-0.015] \\
& \text { Time }=\frac{1}{0.0145}=69 \mathrm{~s} \tag{3}
\end{align*}
$$

[Second 3 marks available if rate is outside range.][Where time not rounded off to whole number, deduct 1 mark.]
(f) WHAT: reaction times double original values / reaction is twice as slow //

JUSTIFY: rate directly proportional to thiosulfate concentration / reaction time inversely proportional to thiosulfate concentration / concentration thiosulfate halved

QUSESTION 4

Eight items to be answered. Six marks to be allocated to each item and one additional mark to be added to each of the first two items for which the highest marks are awarded.
(a) WHAT: (i) green (yellow-green) // (ii) crimson (red)
(b) DESCRIBE: mass of positively-charged material // with electrons (small negative charges) scattered (embedded) in it
[Correctly labelled diagram acceptable.]

(c) WRITE: $\quad{ }_{87}^{223} \mathrm{Fr} \rightarrow \quad{ }_{88}^{223} \mathbf{R a} /+{ }_{-1}^{\mathbf{0}} \boldsymbol{e}$
[Allow if francium not written.] [Accept β instead of e.][Beta-particle as reactant not acceptable unless placed with a minus sign after Fr on the left.]
(d) STATE: position (location) and momentum (velocity, speed, energy) // of an electron cannot be found (measured or known) simultaneously (at the same time) / of a particle cannot be found simultaneously (at the same time) with accuracy
(e) How: (i) 1 sigma // (ii) 2 pi
(f) WHAT: amount containing as many particles* as // the number of atoms in $\mathbf{0 . 0 1 2} \mathbf{~ k g ~ (1 2 ~ g) ~ o f ~ c a r b o n - 1 2 ~ / ~}$
or
amount containing the Avogadro number (Avogadro constant, L, $6 \times \mathbf{1 0}^{\mathbf{2 3}}$) // of particles /
or
amount equal to the relative formula (molecular) mass $\left(\boldsymbol{M}_{\mathbf{r}}\right) / /$ expressed in grams
[*Allow 'atoms', 'molecules', 'ions', 'units' for 'particles'.]
(g) FIND: $\quad \mathbf{S O}_{3}$
(h) CALCULATE: $\mathbf{0 . 1 9 6 - 0 . 1 9 9 ~ m g ~}$
$\frac{0.15}{127} / 0.00118 / 0.0012 / /$

$\times 166=0.196$$\quad$| $\frac{166}{127}=1.31 / /$ |
| :--- |
| $\times 0.15=0.196$ |\quad| $\frac{127}{166} \times 100=76.51 \% / /$ |
| :--- |
| $0.15 \div 0.7651=0.196$ |

[Unit 'mg' not required.][Accept $1.96 \mathbf{- 1 . 9 9 \times 1 0} \mathbf{~ (4)} \mathbf{g}$ but deduct 1 mark if unit omitted.]
(i) STATE: short chains // branches // rings (cyclic compounds, aromatic compounds, compounds with a benzene ring)

ANY TWO: (2×3)
(j) STATE: screening // passing over grit channels (traps) // settlement (sedimentation) ANY TWO: (2×3)
['Filtration' and 'flocculation' unacceptable but not contradictory.]
(k) A GIVE: steel-making // breathing aid // diving //high altitude flying //climbing // rocket fuel // oxyacetylene flame (welding, cutting metals) // combat pollution // medical (hospital use, \{CO poisoning, pulmonary disease, muscle injury\} treatment, oxygen chamber, etc) // beauty (skin) treatment // recreation in oxygen bar // using bomb calorimeter (measuring heats of combustion)

ANY TWO: (2×3)

B STATE: corrosion resistance / protection // can be dyed // toughens metal

QUESTION 5

(a) NAME: Bohr

DISTING: energy level: discrete (fixed, restricted, definite, specific) energy of electron in an atom /
energy of electron in orbit (shell, level) /
orbit (shell, level) which electrons of equal energy can occupy
atomic orbital: region (space, volume but not 'area' or 'place') around the nucleus //
where there is a high probability of finding an electron / where an electron is most likely to be found / where the probability (possibility) of finding an electron is $\mathbf{9 5 \%}$ (or greater)
or
space occupied by electron //
described by approximate solution of Schrödinger equation (2×3)
WRITE: $\quad 1 s^{2} 2 s^{2} 2 p_{\mathrm{x}}{ }^{2} 2 p_{\mathrm{y}}{ }^{2} 2 p_{\mathrm{z}}{ }^{2} 3 s^{2} 3 p_{\mathrm{x}}{ }^{1} 3 p_{\mathrm{y}}{ }^{1} /$

or
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
distribution of electrons in $2 p$ and $3 p$ clearly shown:

[Accept dots or crosses or other as indicator of electron distribution.]

HENCE:
(i) $3 / /$
(ii) 8
(b) DEFINE: the minimum energy required to remove the most loosely-bound (outermost) electron // from an isolated (gaseous) atom in its ground state / from one mole of isolated (gaseous) atoms in their ground state

EXPLAIN: (i) greater nuclear charge / greater number protons in nucleus // smaller atomic radius
['Greater atomic number’ not acceptable.]
(ii) greater atomic radius / most loosely-bound (outermost) electron farther from nucleus / most loosely-bound (outermost) electron more shielded from nucleus
['More shells’ acceptable.]
(c) EXPLAIN: there are three groups of ionisations (electrons, points) with gradual (small) energy differences between them because they involve electrons in the same energy level (shell) //
there are two bigger energy differences (jumps) between these groups of ionisations (electrons, points) because the three energy levels have significantly different discrete (fixed, restricted, definite, specific) energies
or
sharp (bigger) increase (jump) in ionisation energy for $5^{\text {th }}$ (from $4^{\text {th }}$ to $5^{\text {th }}$) electron showing that this is the first electron to be removed from $2^{\text {nd }}$ ($n=2$, new, full, next, another) main level (shell) //
sharp (bigger) increase (jump) in ionisation energy for $13^{\text {th }}$ (from $12^{\text {th }}$ to $13^{\text {th }}$) electron showing that this is the first electron to be removed from $1^{\text {st }}$ ($n=1$, new, full, next, another) main level (shell) //
gradual (small) increase for first four electrons, therefore in same main level (shell) / gradual (small) increase from $5^{\text {th }}$ to $12^{\text {th }}$ electrons, therefore in same main level (shell) / gradual (small) increase from $13^{\text {th }}$ to $14^{\text {th }}$ electrons, therefore in same main level (shell) ANY TWO: (2×3)
[Responses here must make sense and not just contain the correct phrases - beware of incorrect use of sublevel and orbital.]

OTHER: line emission (absorption) spectra of elements

QUESTION 6

(a) NAME: alkanes

DRAW:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$		

[In fully-expanded structures the Hs may be omitted.]
(b) EXPL: propane smaller with fewer electrons / smaller electron cloud / smaller $\boldsymbol{M}_{\mathbf{r}}$ (smaller mass) / lighter molecule //
therefore weaker (fewer) intermolecular \{forces between molecules (van der Waals, London, dispersion, dipole-dipole) forces \}(attractions, interactions) between molecules
(c) (i) EXPL: compounds having the same molecular formula / (same set of atoms) //
but different structural formulas (structures) / different arrangement of atoms
(ii) DRAW:

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{3}$	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}$	

[In the case of single \mathbf{H} atoms bonded to a \mathbf{C} atom in the formula, the \mathbf{H} symbol may be omitted.]
[Cancelling applies but do not apply cancellation to structure of butane if named.]
(d) DEFINE: heat change when $\mathbf{1}$ mole of substance // is burned (reacts) completely in oxygen / is burned in excess oxygen

WRITE: $\quad \mathrm{C}_{\mathbf{4}} \mathrm{H}_{10}+6{ }^{1} \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{\mathbf{2}} \mathrm{O}$
[Accept equation if given as part of CALCULATE below.] [Accept correct balanced equation with $\mathbf{2 C}_{4} \mathbf{H}_{\mathbf{1 0}}$.][Incorrect alkane is unacceptable.]

$4 \mathrm{C}+4 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}$	ΔH	$=$	$-\mathbf{1 5 7 4} \mathrm{kJ}$	(3)
$5 \mathrm{H}_{2}+21 / 2 \mathrm{O}_{2} \rightarrow 5 \mathrm{H}_{2} \mathrm{O}$	ΔH	$=$	$-\mathbf{1 4 2 9} \mathrm{kJ}$	
$\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow 4 \mathrm{C}+5 \mathrm{H}_{2}$	ΔH	$=$	$\mathbf{1 2 5 . 7} \mathrm{kJ}$	(3)
$\mathrm{C}_{4} \mathrm{H}_{10}+61 / 2 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$	ΔH	$=$	$-\mathbf{2 8 7 7 . 3} \mathrm{kJ} \mathrm{mol}^{-1}$	(3)

or

$$
\begin{align*}
\Sigma \Delta H_{\mathrm{c}} & \Sigma \Delta H_{\mathrm{f} \text { (products) }}-\sum \sum \Delta H_{\mathrm{f} \text { (reactants) }} \\
& =4(-393.5)+5(-285.8)-(-125.7) \\
& =-\mathbf{1 5 7 4 (3)}-\mathbf{1 4 2 9 (3) + 1 2 5 . 7 (3)} \\
& =-\mathbf{2 8 7 7 . 3} \mathrm{kJ} \mathrm{~mol}^{-1} \tag{3}
\end{align*}
$$

[If $\mathbf{2} \mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}$ used above deduct 3 marks if $5754.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ is not divided by 2.] [If incorrect alkane $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ used in calculation, allow 3 for nC correctly burned and 3 for $(\mathrm{n}+1) \mathrm{H}_{2}$ correctly burned and 3 for summation if correct.]

QUESTION 7

(a) DISTING: strong acid: good proton $\left(\mathbf{H}^{+}\right)$donor / readily donates proton $\left(\mathbf{H}^{+}\right) / /$ weak acid: poor (weak) proton donor
['Does not readily donate a proton' or references to dissociation not acceptable and cancellation applies.]
(b) IDENTIFY: $\quad \mathbf{H}_{2} \mathbf{O} / / \mathrm{NO}_{2}{ }^{-}$
(c) DEFINE: $\quad-\log _{10}\left[\mathbf{H}^{+}\right] /-\log _{10}\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$
[Square brackets essential.][Mathematical definition expressed in words is acceptable.]
CALCULATE: 0.01 M

$$
\begin{equation*}
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\text {inverse } \log _{10}(-2)=\mathbf{0 . 0 1 ~ M} \tag{3}
\end{equation*}
$$

EXPLAIN: concentration of hydronium (hydrogen) ions $\left\{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right],\left[\mathbf{H}^{+}\right]\right\}$lower than $0.2 \mathrm{M} /$ small (low, 5\%) level of dissociation (only slightly dissociated (ionised), almost undissociated, only 0.01 M dissociated) /
a strong monobasic acid with concentration 0.2 M would have a concentration of hydronium (hydrogen) ions $\left\{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{H}^{+}\right]\right\}=0.2 /$
a strong monobasic acid with concentration 0.2 M would have a $\mathbf{p H}=0.7 /$
K_{a} of nitrous acid from data supplied is only $[0.01]^{2} \div[0.2]=\mathbf{5} \times \mathbf{1 0}^{-4}$ and is consistent with weak acid

WHAT: $\quad \mathbf{0 . 0 1} \mathbf{M}$

CALCULATE: $1 \times \mathbf{1 0}^{\mathbf{- 1 2}} \mathrm{M}$

$$
\begin{align*}
& {\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathbf{1} \times \mathbf{1 0}^{-14}} \tag{3}\\
& {\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \div 0.01=1 \times \mathbf{1 0}^{-12} \mathrm{M}} \\
& \mathbf{p H}+\mathbf{p O H}=\mathbf{1 4} / \mathbf{p O H}=\mathbf{1 2} \tag{3}\\
& {\left[\mathrm{OH}^{-}\right]=\text {inverse } \log _{10}(-12)=1 \times \mathbf{1 0}^{-\mathbf{1 2}} \mathrm{M}} \tag{3}
\end{align*}
$$

(d) DESCRIBE: add freshly-prepared iron(II) sulfate ($\mathbf{F e S O}_{4}$) solution //
trickle $\mathrm{H}_{2} \mathrm{SO}_{4}$ (concentrated sulfuric acid) dropwise
(carefully, slowly) down side of (into slanting) test-tube //
brown ring forms at junction of the two liquids [All marks available from a good labelled diagram.]
(e) EXPLAIN: causes rapid growth of water plants (algae) / causes algal blooms // decay of these plants by aerobic microorganisms (bacteria, decomposers) / respiration by decomposers (bacteria, microorganisms) of these plants uses up oxygen / surface plants block light preventing (reducing) photosynthesis

QUESTION 8

(a) GIVE: ethene

DRAW:

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	

[In the fully-expanded structure the $\mathbf{H s}$ may be omitted.]
(b) DRAW:

water dropping on to / tap (dropping) funnel containing water //
calcium(II) dicarbide (CaC_{2}) //
delivery tubing shown //
collection of ethyne ($\mathrm{C}_{2} \mathrm{H}_{2}$ or A) over water in test-tube, gas jar, etc
[Water in collection trough must be shown but need not be labelled.]
[Max 6 if no diagram.] [Ignore purification of ethyne if included.]
(c) DESCRIBE: correct reagent \{bromine ($\mathbf{B r}_{2} \mathbf{)}$ solution /
acidified potassium manganate(VII) (permanganate) ($\mathbf{K M n O}_{4} / \mathbf{H}^{+}$) ($\left.\left.\mathbf{M n O}_{4}{ }^{-} / \mathbf{H}^{+}\right)\right\}$//
initial colour of bromine \{brown (red, orange, yellow) /
initial colour of acidified manganate(VII) \{purple (pink)\} //
colourless (decolorises, colour disappears) in case of B (ethene, $C_{2} \mathbf{H}_{4}$) distinguishes B from C
[The reagent and colour change must correspond.]['Clear' unacceptable for 'colourless']
(d) (i) NAME: free radical substitution
(ii) GIVE: initiation:
homolysis (splitting, fission) of chlorine molecule $\left(\mathrm{Cl}_{2}\right)$ into free radicals (atoms, Cl°) by ultraviolet (uv) light $/ \mathrm{Cl}_{2} \xrightarrow{\mathrm{uv}} \quad 2 \mathrm{Cl}^{\bullet} / \mathbf{C l}_{2} \xrightarrow{\mathrm{uv}} \quad 2 \mathrm{Cl}$

Where a candidate refers in name or in a drawing to methane instead of ethane and/or methyl instead of ethyl and/or ethane instead of butane, deduct 3 marks but only once in (d).

Where a radical is referred to as an ion or where a diagram shows a radical but the description refers to an ion cancellation applies each time.
chain reaction occurs / propagation steps repeat until one reactant used up
[Accept 'chain reaction occurs' anywhere in (d).]
termination:
combination of remaining radicals to form molecules (chlorine, chloroethane,
butane) /
$2 \mathrm{Cl}^{\bullet} \rightarrow \mathrm{Cl}_{2} / 2 \mathrm{Cl} \rightarrow \mathbf{C l}_{2} /$
$\mathrm{Cl}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} / \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\circ} \rightarrow \mathrm{C}_{2} \mathbf{H}_{5} \mathrm{Cl} /$
$2 \mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$
(iii) EXPLAIN: traces of butane $\left(\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}\right)$ occur as consequence of $\mathrm{C}_{2} \mathbf{H}_{5}{ }^{\bullet}$ (ethyl radicals) combining
[N.B. The marks in part (iii) may only be given for answers in part (iii) and not for similar answers in part (ii). If the parts are not numbered, appropriate answers in part (ii) must be repeated if the marks available for part (iii) are to be awarded.]

QUESTION 9

(a) WRITE: $\frac{\left[\mathbf{N}_{2}\right]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}}$
(b) CALC:
0.9 mol

[Chemically impossible solution of correct quadratic equation retained, deduct 1 mark.] [Quadratic equation with two chemically impossible solutions used, max mark is 7.]
(c) STATE: if system at equilibrium is subjected to a stress* (is disturbed) //
it tends (attempts, alters, moves, adjusts) to oppose (minimise, relieve) the stress*
(disturbance, influence)
[*The term "stress" may be replaced by "pressure, temperature, concentration" but only if all three are given. Do not accept "force" for "stress".]

WHAT: (i) value decreases //
(ii) no effect
['No reaction’ unacceptable.]
JUSTIFY: (i) reaction shifts in endothermic (backward, left) direction to oppose added heat (temperature increase) / reaction shifts in endothermic (backward, left) direction to relieve stress applied //
(ii) only temperature change affects $K_{\mathrm{c}} / \boldsymbol{K}_{\mathrm{c}}$ constant at constant temperature ['What' and 'Justify' are linked.]
(d) NAME: platinum // palladium // rhodium ANY TWO: (2 $\times 3$)
[Symbols unacceptable.]
WHAT: heterogeneous / surface adsorption
['Hetero-catalysis’ unacceptable.][Accept surface absorption.]
GIVE: lower activation energy / reactants adsorbed on surface / reactants brought closer on surface / higher concentration on surface / reactants occupy active sites on surface / chemisorption (chemical attachment) / bond stretching (loosening, weakening)/reactants (reagents) oriented correctly for reaction / activated catalyst formed on catalyst surface / intermediate formed on surface between catalyst and reactant
[Reference alone to intermediate compound or complex not acceptable and cancellation applies.]

NAME: lead compounds / sulfur compounds
[Symbols unacceptable.]

QUESTION 10

(a) (i) GIVE: production of cellulose acetate / production of vinyl acetate (VAM) / production of polyvinyl acetate / production of acetic anhydride (acetylating agent) / solvent / vinegar / flavouring / preserving
(ii) DRAW:

[Allow 3 for methyl even if not expanded. If fuly expanded the $\mathbf{H s}$ of the methyl group need not be shown.][Allow 3 for aldehyde group with all bonds shown.]
(iii) DRAW:

[In the fully-expanded form the $\mathbf{H s}$ need not be shown.]

IDENTIFY: carbonyl carbon /

[May be indicated by arrow, colouring, asterisk, etc.]
[Accept correct planar carbon in an incorrect structure.]
(iv) How: hydrogen $\left(\mathbf{H}_{\mathbf{2}}\right)$ / hydrogenation // nickel (Ni) \{platinum (Pt), palladium (Pd) or ruthenium (Ru)\}
or
lithium aluminium hydride (lithium tetrahydroaluminate, LiAlH_{4}) / sodium borohydride (sodium tetrahydroborate, $\mathbf{N a B H}_{4}$)
(b) DEFINE: (i) number of nucleons (protons and neutrons) in the atoms of an isotope
(ii) average mass of atom(s) of element / average mass of the isotopes of an element taking their abundances into account //
relative to $\frac{1}{12}$ of mass of carbon- $\mathbf{1 2}$ atom
[Relative to half (or any other incorrect fraction) of the mass of carbon-12 is a contradiction and cancellation applies.]

WHAT: ionisation to form positive ions // separation [Deflection not acceptable.]

LIST: vaporisation, ionisation, acceleration, separation, detection [Deflection not acceptable.]

CALCULATE:
69.798 (69.8)

$$
\begin{aligned}
69 \times 60.1 & =4146.9 \\
71 \times 39.9 & =2832.9 \\
100 \text { atoms } & =6979.8 \\
A_{\mathrm{r}} & =69.798(69.8)
\end{aligned}
$$

[69.72 on its own from Formulae and Tables booklet is not acceptable.] [Where candidate doesn't round off correctly - deduct 1 mark.] [Where candidate includes unit deduct 1 mark.]
(c) Define: (i) loss of electrons //
(ii) increase in oxidation number

USE: \quad (iii) oxidising agent: $\mathrm{NO}_{3}{ }^{-} / /+5(5) \rightarrow+2(2)$
[N or nitrogen not acceptable.]
(iv) reducing agent: $\mathbf{C d} / / \mathbf{0} \rightarrow+\mathbf{2 (2)} \quad(2 \times 3)$
balance: $3 \mathrm{Cd}+\mathbf{8} \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \rightarrow 3 \mathrm{Cd}^{2+}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
[Charges essential.]
$\left[3 \mathrm{Cd}+2 \mathrm{NO}_{3}^{-} \rightarrow 3 \mathrm{Cd}^{2+}+2 \mathrm{NO} \ldots\right.$...allow 4 marks even if H^{+}and $\mathrm{H}_{2} \mathrm{O}$ not balanced.] [Charges essential.]

QUESTION 11

(a) DEFINE: number expressing the relative (measure of) attraction of an atom for shared pair(s) of electrons / for electrons in a covalent bond

ACCOUNT: lone pair of electrons has greater repelling power than a bond pair of electrons // bonds (\mathbf{H} atoms) in $\mathbf{N H}_{\mathbf{3}}$ pushed closer together than in SiH_{4} /
ammonia has three bond pairs (one lone pair) where silane has four bond pairs (no lone pair)

USE: \quad electronegativity differences: $\mathbf{N}-\mathbf{H}=\mathbf{0 . 8 4} ; \mathbf{S i}-\mathbf{H}=\mathbf{0} . \mathbf{3}=\mathbf{N}-\mathbf{H}$ more polar / electronegativity difference greater for $\mathbf{N}-\mathbf{H}=>\mathbf{N}-\mathbf{H}$ more polar

WHICH: ammonia //
JUSTIFY: in ammonia hydrogen bonded to a small, highly (very) electronegative element (atom) /
when hydrogen bonding occurs hydrogen bonded to nitrogen, oxygen or fluorine [Both parts to be linked].

GIVE: centres of positive and negative charge coincide / dipole moments cancel / symmetrical (even) distribution (arrangement) of bonds in 3d(imensional space) around central atom
[Examples insufficient; reference to 'symmetry' unacceptable unless in sufficient detail; 'charges cancel' is not acceptable.]
(b) (i) HOW MANY: $\mathbf{0 . 0 5} \mathrm{mol}$

$$
M_{\mathrm{r}}=252(3) \quad \frac{12.6}{252}=\mathbf{0 . 0 5} \mathrm{mol}(3)
$$

(ii) MASS: $\quad 7.6 \mathrm{~g}$

$$
0.05 \mathrm{~mol} \rightarrow \mathbf{0 . 0 5} \mathrm{~mol}(3) 0.05 \times 152=7.6 \mathrm{~g}
$$

(iii) vOLUME:

$$
\begin{equation*}
1.12 \mathrm{l} / 1120 \mathrm{~cm}^{3} / 1.12 \times 10^{-3} \mathrm{~m}^{3} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& \mathbf{0 . 0 5} \mathrm{mol} \rightarrow \mathbf{0 . 0 5} \mathrm{~mol} \tag{3}\\
& 0.05 \times 22.4=\mathbf{1 . 1 2} \mathrm{l} / 0.05 \times 22,400=\mathbf{1 , 1 2 0} \mathrm{cm}^{3} \tag{3}
\end{align*}
$$

(iv) NUMBER: $\quad 1.2 \times 10^{23}$

$$
\begin{equation*}
\mathbf{0 . 0 5} \mathrm{mol} \rightarrow \mathbf{0 . 2} \mathrm{~mol} \text { (2) } 0.2 \times 6 \times 10^{23}=\mathbf{1 . 2} \times \mathbf{1 0}^{23} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { HOW MANY: } \quad 3.6 \times \mathbf{1 0}^{\mathbf{2 3}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
3 \times 1.2 \times 10^{23}=3.6 \times \mathbf{1 0}^{23} \tag{3}
\end{equation*}
$$

(c) A (i) wHY: due to dissolved carbon dioxide $\left(\mathbf{C O}_{2}\right) /$ carbonic acid $\left(\mathbf{H}_{2} \mathbf{C O}_{3}\right)$
(ii) Two: damage to plants (trees) // fish kills // corrosion // leaching of minerals // damage to limestone (marble) buildings (monuments)

ANY TWO: (2×3)
(iii) show: $\mathbf{S O}_{2}+\mathbf{H}_{2} \mathbf{O} \rightarrow \mathbf{H}_{2} \mathbf{S O}_{3}$
and
$\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} / /$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
or
$\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{3}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
[Equations need not be balanced.][Correct equivalent word equations acceptable.]
(iv) How: burning fossil fuels (coal, oil, etc) / waste incineration
(v) AIR: small population / island / little (no) heavy industry / windy / prevailing

SW wind from (off) Atlantic / burning smoky fuels in cities forbidden
B (i) EXPL: regular solids //
made up of particles (atoms, ions, molecules) / with faces intersecting at fixed (definite, specific, characteristic) angles / consisting of particles in a lattice / having its particles in a certain packing arrangement
(ii) DESC: layers consisting of hexagons of C atoms / weak (intermolecular, van der Waals)
forces between layers //
layers can slide over each other / layers can rub off onto paper
(iii) Refer: all covalent bonds between C atoms // in a tetrahedral arrangement / has a giant interlocking structure
(iv) EXPL: outer (valence) electrons delocalised (form cloud) // electrons free to move

Blank Page

